1.Molecular Genetic and Serologic Analysis of the O allele in the Korean Population
Ja Young LEE ; Sae Am SONG ; Seung Hwan OH
Korean Journal of Blood Transfusion 2019;30(2):124-137
BACKGROUND: The recent expansion of knowledge about various ABO alleles has led to the need for a comprehensive measure to cover the numerous polymorphisms dispersed in the ABO gene. A few studies have examined the diversity of the O allele compared to A or B subgroup alleles, resulting in antigenic changes. This study investigated the relationship between the serologic and molecular genetic characteristics of the O alleles in the Korean population. METHODS: One hundred and five samples from healthy blood group O subjects were selected randomly. The isoagglutinin titer was measured using a tube agglutination and gel microcolumn assay. The ABO alleles were analyzed by sequencing exons 6 and 7 of the ABO gene. When the origin of a heterozygous nucleotide sequence was ambiguous, it was separated into a single allele using mono-allele amplification or cloning. RESULTS: The median IgM isoagglutinin titer was eight. In contrast, the median IgG anti-A and anti-B isoagglutinin titers were 64 and 32, respectively. The IgG isoagglutinin titer showed a significant increase with age (P<0.0001). Six O alleles were observed in 105 blood group O populations by sequencing. The O01 and O02 alleles were common (0.57, 0.36). Three rare O alleles (O04, O05, and O06) and one novel non-deletional O allele were found. CONCLUSION: The distribution of isoagglutinin titers of blood group O and the genetic frequency of O alleles in this study would form the basis of the development and interpretation of ABO genotyping and serologic workup in the Korean population.
Agglutination
;
Alleles
;
Base Sequence
;
Clone Cells
;
Cloning, Organism
;
Exons
;
Immunoglobulin G
;
Immunoglobulin M
;
Molecular Biology
;
Sequence Analysis
2.Transient expression of hemagglutinin antigen from canine influenza virus H3N2 in Nicotiana benthamiana and Lactuca sativa
Puna Maya MAHARJAN ; Sunghwa CHOE
Clinical and Experimental Vaccine Research 2019;8(2):124-131
PURPOSE: Canine influenza virus (CIV), H3N2, carries potentiality for zoonotic transmission and genetic assortment which raises a concern on possible epidemics, and human threats in future. To manage possible threats, the development of rapid and effective methods of CIV vaccine production is required. The plant provides economical, safe, and robust production platform. We investigated whether hemagglutinin (HA) antigen from Korea-originated CIV could be produced in Nicotiana benthamiana and lettuce, Lactuca sativa by a DNA viral vector system. MATERIALS AND METHODS: We used DNA sequences of the HA gene from Korean CIV strain influenza A/canine/Korea/S3001/2015 (H3N2) for cloning into a geminiviral expression vectors to express recombinant HA (rHA) antigen in the plant. Agrobacterium-mediated infiltration was performed to introduce HA-carrying vector into host plants cells. Laboratory-grown N. benthamiana, and grocery-purchased or hydroponically-grown lettuce plant leaves were used as host plants. RESULTS: CIV rHA antigen was successfully expressed in host plant species both N. benthamiana and L. sativa by geminiviral vector. Both complex-glycosylated and basal-glycosylated form of rHA were produced in lettuce, depending on presence of endoplasmic reticulum (ER) retention signal. In terms of rHA expression level, canine HA (H3N2) showed preference to the native signal peptide than ER retention signal peptide in the tested geminiviral vector system. CONCLUSION: Grocery-purchased lettuce leaves could serve as an instant host system for the transient expression of influenza antigen at the time of emergency. The geminiviral vector was able to induce expression of complex-glycosylated and basal-glycosylated rHA in lettuce and tobacco.
Base Sequence
;
Clone Cells
;
Cloning, Organism
;
DNA
;
Emergencies
;
Endoplasmic Reticulum
;
Hemagglutinins
;
Humans
;
Influenza, Human
;
Lettuce
;
Orthomyxoviridae
;
Plant Leaves
;
Plants
;
Protein Sorting Signals
;
Tobacco
3.A Journey to Understand Glucose Homeostasis: Starting from Rat Glucose Transporter Type 2 Promoter Cloning to Hyperglycemia.
Diabetes & Metabolism Journal 2018;42(6):465-471
My professional journey to understand the glucose homeostasis began in the 1990s, starting from cloning of the promoter region of glucose transporter type 2 (GLUT2) gene that led us to establish research foundation of my group. When I was a graduate student, I simply thought that hyperglycemia, a typical clinical manifestation of type 2 diabetes mellitus (T2DM), could be caused by a defect in the glucose transport system in the body. Thus, if a molecular mechanism controlling glucose transport system could be understood, treatment of T2DM could be possible. In the early 70s, hyperglycemia was thought to develop primarily due to a defect in the muscle and adipose tissue; thus, muscle/adipose tissue type glucose transporter (GLUT4) became a major research interest in the diabetology. However, glucose utilization occurs not only in muscle/adipose tissue but also in liver and brain. Thus, I was interested in the hepatic glucose transport system, where glucose storage and release are the most actively occurring.
Adipogenesis
;
Adipose Tissue
;
Animals
;
Brain
;
Clone Cells*
;
Cloning, Organism*
;
Diabetes Mellitus, Type 2
;
Glucokinase
;
Gluconeogenesis
;
Glucose Transport Proteins, Facilitative*
;
Glucose Transporter Type 2*
;
Glucose*
;
Glycolysis
;
Homeostasis*
;
Humans
;
Hyperglycemia*
;
Liver
;
Promoter Regions, Genetic
;
Rats*
;
Transcription Factors
4.Genetic Diversity of Echinococcus granulosus Genotype G1 in Xinjiang, Northwest of China
Bin YAN ; Xiafei LIU ; Junyuan WU ; Shanshan ZHAO ; Wumei YUAN ; Baoju WANG ; Hazi WURELI ; Changchun TU ; Chuangfu CHEN ; Yuanzhi WANG
The Korean Journal of Parasitology 2018;56(4):391-396
Cystic echinococcosis (CE) caused by E. granulosus is a serious helminthic zoonosis in humans, livestock and wildlife. Xinjiang is one of high endemic province for CE in China. A total of 55 sheep and cattle livers containing echinococcal cysts were collected from slaughterhouses in Changji and Yining City, northern region of Xinjiang. PCR was employed for cloning 2 gene fragments, 12S rRNA and CO1 for analysis of phylogenetic diversity of E. granulosus. The results showed that all the samples collected were identified as G1 genotype of E. granulosus. Interestingly, YL5 and CJ75 strains were the older branches compared to those strains from France, Argentina, Australia. CO1 gene fragment showed 20 new genotype haploids and 5 new genotype haplogroups (H1-H5) by the analysis of Network 5.0 software, and the YLY17 strain was identified as the most ancestral haplotype. The major haplotypes, such as CJ75 and YL5 strains, showed identical to the isolates from Middle East. The international and domestic trade of livestock might contribute to the dispersal of different haplotypes for E. granulosus evolution.
Abattoirs
;
Animals
;
Argentina
;
Australia
;
Cattle
;
China
;
Clone Cells
;
Cloning, Organism
;
Echinococcosis
;
Echinococcus granulosus
;
Echinococcus
;
France
;
Genetic Variation
;
Genotype
;
Haploidy
;
Haplotypes
;
Helminths
;
Humans
;
Liver
;
Livestock
;
Middle East
;
Polymerase Chain Reaction
;
Sheep
5.An Outbreak of Histomoniasis in Backyard Sanhuang Chickens
Dandan LIU ; Lingming KONG ; Jianping TAO ; Jinjun XU
The Korean Journal of Parasitology 2018;56(6):597-602
Histomonas meleagridis is a facultative anaerobic parasite, which can cause a common poultry disease known as histomoniasis. The species and age of the birds impacts on the susceptibility, with turkey being the most susceptible species. Chickens are less susceptible to H. meleagridis than turkeys and usually serve as reservoir hosts. Here, the diagnosis of an outbreak of histomoniasis in backyard Sanhuang chickens is described. The primary diagnosis was made based on clinical symptoms, general changes at necropsy, histopathology, and the isolation and cultivation of parasites. The pathogen was further confirmed by cloning, PCR identification, and animal inoculation tests. A strain of H. meleagridis, named HM-JSYZ-C, with a higher pathogenicity level in chickens was obtained. The study lays a foundation for further investigations into H. meleagridis and histomoniasis in chickens.
Animals
;
Birds
;
Chickens
;
Clone Cells
;
Cloning, Organism
;
Diagnosis
;
Parasites
;
Polymerase Chain Reaction
;
Poultry Diseases
;
Protozoan Infections
;
Turkey
;
Turkeys
;
Virulence
6.Health and temperaments of cloned working dogs
Min Jung KIM ; Hyun Ju OH ; Sun Young HWANG ; Tai Young HUR ; Byeong Chun LEE
Journal of Veterinary Science 2018;19(5):585-591
Dogs serve human society in various ways by working at tasks that are based on their superior olfactory sensitivity. However, it has been reported that only about half of all trained dogs may qualify as working dogs through conventional breeding management because proper temperament and health are needed in addition to their innate scent detection ability. To overcome this low efficiency of breeding qualified working dogs, and to reduce the enormous costs of maintaining unqualified dogs, somatic cell nuclear transfer has been applied in the propagation of working dogs. Herein, we review the history of cloning working dogs and evaluate the health development, temperaments, and behavioral similarities among the cloned dogs. We also discuss concerns about dog cloning including those related to birth defects, lifespan, and cloning efficiency.
Animals
;
Breeding
;
Clone Cells
;
Cloning, Organism
;
Congenital Abnormalities
;
Dogs
;
Humans
;
Temperament
7.Variable localization of Toll-like receptors in human fallopian tube epithelial cells.
Fatemehsadat AMJADI ; Zahra ZANDIEH ; Ensieh SALEHI ; Reza JAFARI ; Nasrin GHASEMI ; Abbas AFLATOONIAN ; Alireza FAZELI ; Reza AFLATOONIAN
Clinical and Experimental Reproductive Medicine 2018;45(1):1-9
OBJECTIVE: To determine the localization, expression, and function of Toll-like receptors (TLRs) in fallopian tube epithelial cells. METHODS: The localization of TLRs in fallopian tube epithelial cells was investigated by immunostaining. Surprisingly, the intensity of staining was not equal in the secretory and ciliated cells. After primary cell culture of fallopian tube epithelial cells, ring cloning was used to isolate colonies of ciliated epithelial cells, distinct from non-ciliated epithelial cells. The expression of TLRs 1–10 was examined by quantitative real-time polymerase chain reaction, and protein localization was confirmed by immunostaining. The function of the TLRs was determined by interleukin (IL)-6 and IL-8 production in response to TLR2, TLR3, TLR5, TLR7, and TLR9 ligands. RESULTS: Fallopian tube epithelial cells expressed TLRs 1–10 in a cell-type-specific manner. Exposing fallopian tube epithelial cells to TLR2, TLR3, TLR5, TLR7, and TLR9 agonists induced the secretion of proinflammatory cytokines such as IL-6 and IL-8. CONCLUSION: Our findings suggest that TLR expression in the fallopian tubes is cell-type-specific. According to our results, ciliated cells may play more effective role than non-ciliated cells in the innate immune defense of the fallopian tubes, and in interactions with gametes and embryos.
Clone Cells
;
Cloning, Organism
;
Cytokines
;
Embryonic Structures
;
Epithelial Cells*
;
Fallopian Tubes*
;
Female
;
Germ Cells
;
Humans*
;
Interleukin-6
;
Interleukin-8
;
Interleukins
;
Ligands
;
Primary Cell Culture
;
Real-Time Polymerase Chain Reaction
;
Toll-Like Receptors*
8.Regulation of Osteoblast Metabolism by Wnt Signaling.
Megan C MOORER ; Ryan C RIDDLE
Endocrinology and Metabolism 2018;33(3):318-330
Wnt/β-catenin signaling plays a critical role in the achievement of peak bone mass, affecting the commitment of mesenchymal progenitors to the osteoblast lineage and the anabolic capacity of osteoblasts depositing bone matrix. Recent studies suggest that this evolutionarily-conserved, developmental pathway exerts its anabolic effects in part by coordinating osteoblast activity with intermediary metabolism. These findings are compatible with the cloning of the gene encoding the low-density lipoprotein related receptor-5 (LRP5) Wnt co-receptor from a diabetes-susceptibility locus and the now well-established linkage between Wnt signaling and metabolism. In this article, we provide an overview of the role of Wnt signaling in whole-body metabolism and review the literature regarding the impact of Wnt signaling on the osteoblast's utilization of three different energy sources: fatty acids, glucose, and glutamine. Special attention is devoted to the net effect of nutrient utilization and the mode of regulation by Wnt signaling. Mechanistic studies indicate that the utilization of each substrate is governed by a unique mechanism of control with β-catenin-dependent signaling regulating fatty acid β-oxidation, while glucose and glutamine utilization are β-catenin-independent and downstream of mammalian target of rapamycin complex 2 (mTORC2) and mammalian target of rapamycin complex 1 (mTORC1) activation, respectively. The emergence of these data has provided a new context for the mechanisms by which Wnt signaling influences bone development.
Anabolic Agents
;
beta Catenin
;
Bone Development
;
Bone Matrix
;
Clone Cells
;
Cloning, Organism
;
Fatty Acids
;
Glucose
;
Glutamine
;
Lipoproteins
;
Metabolism*
;
Osteoblasts*
;
Sirolimus
9.Primary Myelofibrosis with MPL S505N Mutation: The First Case Reported in Korea.
Ung Jun KIM ; Ho Jong LEE ; In Sun CHOI ; Seong Ho KANG ; Sook Jin JANG ; Dae Soo MOON ; Geon PARK
Laboratory Medicine Online 2018;8(4):167-170
MPL mutation is an important molecular marker in myeloproliferative neoplasms (MPN). Although MPL W515 is a hot spot for missense mutations in MPN, MPL S505 mutations have been reported in both familial and non-familial MPN. A 72-year-old male visited the hospital, complaining mainly of dizziness and epistaxis. Leukocytosis, anemia, thrombocytopenia, tear drop cells, nucleated RBCs, and myeloblasts were observed in both complete blood cell counts and peripheral blood smears. Bone marrow aspiration failed due to dilution with peripheral blood. BM biopsy indicated hypercellular marrow, megakaryocytic proliferation with atypia, and grade 3 reticulin fibrosis. Conventional cytogenetics results were as follows: 46,XY,del(13)(q12q22)[19]/46,XY[1]. Molecular studies did not detect JAK2 V617F, BCR/ABL translocation, JAK2 exon 12, and CALR exon 9 mutations. The MPL S505N mutation was verified by colony PCR and Sanger sequencing following gene cloning. Based on the above findings, a diagnosis of overt primary myelofibrosis (PMF) was indicated. Mutation studies of buccal and T cells were not conducted. Further, family members were not subjected to mutation studies. Therefore, we were unable to determine whether this mutation was familial or non-familial. Six months after the first visit to the hospital, the patient died due to pneumonia and sepsis. Thrombotic symptoms or major bleeding events did not develop during the survival period following diagnosis of PMF. To the best of our knowledge, this may be the first reported case of PMF with the MPL S505N mutation in Korea.
Aged
;
Anemia
;
Biopsy
;
Blood Cell Count
;
Bone Marrow
;
Clone Cells
;
Cloning, Organism
;
Cytogenetics
;
Diagnosis
;
Dizziness
;
Epistaxis
;
Exons
;
Fibrosis
;
Granulocyte Precursor Cells
;
Hemorrhage
;
Humans
;
Korea*
;
Leukocytosis
;
Male
;
Mutation, Missense
;
Pneumonia
;
Polymerase Chain Reaction
;
Primary Myelofibrosis*
;
Reticulin
;
Sepsis
;
T-Lymphocytes
;
Tears
;
Thrombocytopenia
10.Next-generation sequencing enables the discovery of more diverse positive clones from a phage-displayed antibody library.
Wonjun YANG ; Aerin YOON ; Sanghoon LEE ; Soohyun KIM ; Jungwon HAN ; Junho CHUNG
Experimental & Molecular Medicine 2017;49(3):e308-
Phage display technology provides a powerful tool to screen a library for a binding molecule via an enrichment process. It has been adopted as a critical technology in the development of therapeutic antibodies. However, a major drawback of phage display technology is that because the degree of the enrichment cannot be controlled during the bio-panning process, it frequently results in a limited number of clones. In this study, we applied next-generation sequencing (NGS) to screen clones from a library and determine whether a greater number of clones can be identified using NGS than using conventional methods. Three chicken immune single-chain variable fragment (scFv) libraries were subjected to bio-panning on prostate-specific antigen (PSA). Phagemid DNA prepared from the original libraries as well as from the Escherichia coli pool after each round of bio-panning was analyzed using NGS, and the heavy chain complementarity-determining region 3 (HCDR3) sequences of the scFv clones were determined. Subsequently, through two-step linker PCR and cloning, the entire scFv gene was retrieved and analyzed for its reactivity to PSA in a phage enzyme immunoassay. After four rounds of bio-panning, the conventional colony screening method was performed for comparison. The scFv clones retrieved from NGS analysis included all clones identified by the conventional colony screening method as well as many additional clones. The enrichment of the HCDR3 sequence throughout the bio-panning process was a positive predictive factor for the selection of PSA-reactive scFv clones.
Antibodies
;
Bacteriophages
;
Chickens
;
Clone Cells*
;
Cloning, Organism
;
Complementarity Determining Regions
;
DNA
;
Escherichia coli
;
Immunoenzyme Techniques
;
Mass Screening
;
Methods
;
Polymerase Chain Reaction
;
Prostate-Specific Antigen
;
Single-Chain Antibodies

Result Analysis
Print
Save
E-mail