1.Zuogui Jiangtang Qinggan Prescription promotes recovery of intestinal mucosal barrier in mice with type 2 diabetes mellitus and nonalcoholic fatty liver disease by improving intestinal flora homeostasis.
Jun-Ju ZOU ; Hong LI ; Min ZHOU ; Qiu-Qing HUANG ; Yong-Jun WU ; Rong YU
China Journal of Chinese Materia Medica 2023;48(2):525-533
This study aimed to investigate the recovery effect of Zuogui Jiangtang Qinggan Prescription on intestinal flora homeostasis control and intestinal mucosal barrier in type 2 diabetes mellitus(T2DM) with nonalcoholic fatty liver disease(NAFLD) induced by a high-fat diet. NAFLD was established in MKR transgenic mice(T2DM mice) by a high-fat diet(HFD), and subsequently treated for 8 weeks with Zuogui Jiangtang Qinggan Prescription(7.5, 15 g·kg~(-1)) and metformin(0.067 g·kg~(-1)). Triglyceride and liver function were assessed using serum. The hematoxylin-eosin(HE) staining and Masson staining were used to stain the liver tissue, while HE staining and AB-PAS staining were used to stain the intestine tissue. 16S rRNA sequencing was utilized to track the changes in the intestinal flora of the mice in each group. Polymerase chain reaction(PCR) and immunofluorescence were used to determine the protein and mRNA expression levels of ZO-1, Occludin, and Claudin-1. The results demonstrated that Zuogui Jiangtang Qinggan Prescription increased the body mass of T2DM mice with NAFLD and decreased the hepatic index. It down-regulated the serum biomarkers of liver function and dyslipidemia such as alanine aminotransferase(ALT), aspartate transaminase(AST), and triglycerides(TG), increased insulin sensitivity, and improved glucose tolerance. According to the results of 16S rRNA sequencing, the Zuogui Jiangtang Qinggan Prescription altered the composition and abundance of the intestinal flora, increasing the relative abundances of Muribaculaceae, Lactobacillaceae, Lactobacillus, Akkermansia, and Bacteroidota and decreasing the relative abundances of Lachnospiraceae, Firmicutes, Deslfobacteria, Proteobacteria, and Desulfovibrionaceae. According to the pathological examination of the intestinal mucosa, Zuogui Jiangtang Qinggan Prescritpion increased the expression levels of the tight junction proteins ZO-1, Occludin, and Claudin-1, promoted intestinal mucosa repair, protected intestinal villi, and increased the height of intestinal mucosa villi and the number of goblet cells. By enhancing intestinal mucosal barrier repair and controlling intestinal microbiota homeostasis, Zuogui Jiangtang Qinggan Prescription reduces intestinal mucosal damage induced by T2DM and NAFLD.
Mice
;
Animals
;
Non-alcoholic Fatty Liver Disease/metabolism*
;
Gastrointestinal Microbiome
;
RNA, Ribosomal, 16S
;
Diabetes Mellitus, Type 2/metabolism*
;
Occludin/pharmacology*
;
Claudin-1/metabolism*
;
Intestinal Mucosa
;
Liver
;
Triglycerides/metabolism*
;
Diet, High-Fat
;
Homeostasis
;
Mice, Inbred C57BL
2.Effects of Buyang Huanwu Decoction on Intestinal Barrier, Intestinal Flora, and Trimethylamine Oxide in Rats with Heart Failure.
Jie-Qiong WENG ; Jie-Bai LI ; Meng-Fei YUAN ; Ting-Ting YAO ; Jing-Fang ZHANG ; Yuan-Yuan ZENG ; Jing ZHAO ; Ying LI ; Ke XU ; Xiao-Xu SHEN
Chinese journal of integrative medicine 2023;29(2):155-161
OBJECTIVE:
To explore the mechanisms of Buyang Huanwu Decoction (BYHWD) modulating the gut microbiome and trimethylamine oxide (TAMO) to exert cardioprotective effects.
METHODS:
Ligation of the left anterior descending coronary artery was performed in rats to induce heart failure (HF). Except for the sham-operation group (n=10), 36 operation-induced models were randomized into 3 groups using a random number table (n=12 in each group): the model group, the BYHWD group (15.02 g/kg BYHWD), and the positive group (4.99 g/kg metoprolol succinate). After 4-week treatment (once daily by gavage), echocardiography was applied to evaluate the cardiac function and the Tei index (the ratio of ventricular isovolumic contraction time (IVCT) and isovolumic diastolic time (IVRT) to ejection time (ET)) was calculated; hematoxylin-eosin (HE) staining was observed to characterize the pathology of the myocardium and small intestinal villi. D-lactic acid was detected by an enzyme-linked immunosorbent assay (ELISA). Expressions of occludin, claudin-1, and zonula occludens (ZO-1) were detected by Western blot. 16S ribosomal ribonucleic acid (16S rRNA) sequencing was used to explore the changes in the intestinal flora. TMAO was detected via liquid chromatography-tandem mass spectrometry (LC-MS/MS).
RESULTS:
In the echocardiography, the Tei index was considerably lower in the positive and BYHWD groups compared with the model group (P<0.05). Besides, BYHWD improved the pathology of myocardium and small intestine of HF rats and lowered the D-lactic acid content in the serum, when compared with the model group (P<0.05). BYHWD also improved the expression of occludin and claudin-1 (P<0.05); in the gut microbiota analysis, BYHWD slowed down modifications in the structure distribution of gut microbiota and regulated the diversity of intestinal flora in HF rats. The content of TMAO in the serum was significantly lowered by BYWHT compared with the model group (P<0.05).
CONCLUSION
BYHWD may delay progression of HF by enhancing the intestinal barrier structure, and regulating intestinal flora and TAMO.
Rats
;
Animals
;
Rats, Sprague-Dawley
;
Gastrointestinal Microbiome
;
Chromatography, Liquid
;
Claudin-1
;
Occludin
;
RNA, Ribosomal, 16S
;
Tandem Mass Spectrometry
;
Drugs, Chinese Herbal/pharmacology*
;
Heart Failure
3.Role of Nrf2/GPX4 mediated ferroptosis in intestinal injury in sepsis.
Tao MA ; Weiwei HUANG ; Zhihua LI ; Yi WANG ; Xiaoming GAO ; Xiangyou YU
Chinese Critical Care Medicine 2023;35(11):1188-1194
OBJECTIVE:
To investigate whether ferroptosis exists in sepsis induced intestinal injury, and to verify the association between ferroptosis in sepsis induced intestinal injury and intestinal inflammation and barrier function by stimulating and inhibiting the nuclear factor E2-related factor 2/glutathione peroxidase 4 (Nrf2/GPX4) pathway.
METHODS:
Forty-eight SPF grade male Sprague-Darvley (SD) rats with a body weight of 220-250 g were divided into sham operation group (Sham group), sepsis group (CLP group), sepsis+iron chelating agent deferoxamine (DFO) group (CLP+DFO group) and sepsis+ferroptosis inducer Erastin group (CLP+Erastin group) using a random number table method, with 12 rats in each group. The sepsis model was established by cecal ligation and puncture (CLP). The Sham group was only performed with abdominal opening and closing operations. After modeling, the CLP+DFO group received subcutaneous injection of 20 mg/kg of DFO, the CLP+Erastin group was intraperitoneally injected with 20 mg/kg of Erastin. Each group received subcutaneous injection of 50 mg/kg physiological saline for fluid resuscitation after surgery, and the survival status of the rats was observed 24 hours after surgery. At 24 hours after model establishment, 6 rats in each group were selected. First, live small intestine tissue was taken for observation of mitochondrial morphology in smooth muscle cells under transmission electron microscopy and determination of reactive oxygen species (ROS). Then, blood was collected from the abdominal aorta and euthanized. The remaining 6 rats were sacrificed after completing blood collection from the abdominal aorta, and then small intestine tissue was taken. Western blotting was used to detect the expression of intestinal injury markers such as Claudin-1 and ferroptosis related proteins GPX4 and Nrf2. Observe the pathological changes of small intestine tissue using hematoxylin-eosin (HE) staining and complete Chiu score; Detection of tumor necrosis factor-α (TNF-α), interleukins (IL-1β, IL-6) levels in serum using enzyme-linked immunosorbent assay (ELISA). The levels of serum iron ions (Fe3+), malondialdehyde (MDA), and D-lactate dehydrogenase (D-LDH) were measured.
RESULTS:
(1) Compared with the Sham group, the 24-hour survival rate of rats in the CLP group and CLP+Erastin group significantly decreased (66.7%, 50.0% vs. 100%, both P < 0.05), while there was no significant difference in the CLP+DFO group (83.3% vs. 100%, P = 0.25). (2) Western blotting results showed that compared with the Sham group, the expressions of GPX4 and Claudin-1 in the small intestine tissue of the CLP group, CLP+DFO group, and CLP+Erastin group decreased significantly, while the expression of Nrf2 increased significantly (GPX4/β-actin: 0.56±0.02, 1.03±0.01, 0.32±0.01 vs. 1.57±0.01, Claudin-1/β-actin: 0.60±0.04, 0.96±0.07, 0.41±0.01 vs. 1.40±0.01, Nrf2/β-actin: 0.88±0.02, 0.72±0.01, 1.14±0.01 vs. 0.43±0.02, all P < 0.05). Compared with the CLP group, the expressions of GPX4 and Claudin-1 were significantly increased in the CLP+DFO group, while the expression of Nrf2 was significantly reduced. In the CLP+Erastin group, the expressions of GPX4 and Claudin-1 further decreased, while the expression of Nrf2 further increased (all P < 0.05). (3) Under the light microscope, compared with the Sham group, the CLP group, CLP+DFO group, and CLP+Erastin group showed structural disorder in the small intestinal mucosa and submucosal tissue, significant infiltration of inflammatory cells, and destruction of glandular and villous structures. The Chui score was significantly higher (3.25±0.46, 2.00±0.82, 4.50±0.55 vs. 1.25±0.45, all P < 0.05). (4) Under transmission electron microscopy, compared with the Sham group, the mitochondria in the other three groups of small intestinal smooth muscle cells showed varying degrees of volume reduction, increased membrane density, and reduced or disappeared cristae. The CLP+Erastin group showed the most significant changes, while the CLP+DFO group showed only slight changes in mitochondrial morphology. (5) Compared to the Sham group, the CLP group, CLP+DFO group, and CLP+Erastin group had serum levels of TNF-α, IL-1β, IL-6, MDA, D-LDH, and ROS in small intestine tissue were significantly increased, while the serum Fe3+ content was significantly reduced [TNF-α (ng/L): 21.49±1.41, 17.24±1.00, 28.66±2.72 vs. 14.17±1.24; IL-1β (ng/L): 108.40±3.09, 43.19±8.75, 145.70±11.00 vs. 24.50±5.55; IL-6 (ng/L): 112.50±9.76, 45.90±6.52, 151.80±9.38 vs. 12.89±6.11; MDA (μmol/L): 5.61±0.49, 3.89±0.28, 8.56±1.17 vs. 1.86±0.41; D-LDH (kU/L): 39.39±3.22, 25.38±2.34, 53.29±10.53 vs. 10.79±0.52; ROS (fluorescence intensity): 90 712±6 436, 73 278±4 775, 110 913±9 287 vs. 54 318±2 226; Fe3+ (μmol/L): 22.19±1.34, 34.05±1.94, 12.99±1.08 vs. 51.74±11.07; all P < 0.05]. Compared with CLP group, the levels of TNF-α, IL-1β, IL-6, MDA, D-LDH and ROS in CLP+Erastin group were further increased, and the content of Fe3+ was further decreased, the CLP+DFO group was the opposite (all P < 0.05).
CONCLUSIONS
Ferroptosis exists in the intestinal injury of septic rats, and stimulating or inhibiting ferroptosis through the Nrf2/GPX4 pathway can effectively intervene in the inflammatory state and intestinal mechanical barrier of the body.
Rats
;
Male
;
Animals
;
NF-E2-Related Factor 2
;
Tumor Necrosis Factor-alpha
;
Ferroptosis
;
Reactive Oxygen Species
;
Actins
;
Claudin-1
;
Interleukin-6
;
Sepsis/metabolism*
;
Iron
4.Endogenous FGF21 attenuates blood-brain barrier disruption in penumbra after delayed recanalization in MCAO rats through FGFR1/PI3K/Akt pathway.
Wen ZHENG ; Wenjun LI ; Yini ZENG ; Hui YUAN ; Heng YANG ; Ru CHEN ; Anding ZHU ; Jinze WU ; Zhi SONG ; Wenguang YAN
Journal of Central South University(Medical Sciences) 2023;48(5):648-662
OBJECTIVES:
Restoration of blood circulation within "time window" is the principal treating goal for treating acute ischemic stroke. Previous studies revealed that delayed recanalization might cause serious ischemia/reperfusion injury. However, plenty of evidences showed delayed recanalization improved neurological outcomes in acute ischemic stroke. This study aims to explore the role of delayed recanalization on blood-brain barrier (BBB) in the penumbra (surrounding ischemic core) and neurological outcomes after middle cerebral artery occlusion (MCAO).
METHODS:
Recanalization was performed on the 3rd day after MCAO. BBB disruption was tested by Western blotting, Evans blue dye, and immunofluorescence staining. Infarct volume and neurological outcomes were evaluated on the 7th day after MCAO. The expression of fibroblast growth factor 21 (FGF21), fibroblast growth factor receptor 1 (FGFR1), phosphatidylinositol-3-kinase (PI3K), and serine/threonine kinase (Akt) in the penumbra were observed by immunofluorescence staining and/or Western blotting.
RESULTS:
The extraversion of Evans blue, IgG, and albumin increased surrounding ischemic core after MCAO, but significantly decreased after recanalization. The expression of Claudin-5, Occludin, and zona occludens 1 (ZO-1) decreased surrounding ischemic core after MCAO, but significantly increased after recanalization. Infarct volume reduced and neurological outcomes improved following recanalization (on the 7th day after MCAO). The expressions of Claudin-5, Occludin, and ZO-1 decreased surrounding ischemic core following MCAO, which were up-regulated corresponding to the increases of FGF21, p-FGFR1, PI3K, and p-Akt after recanalization. Intra-cerebroventricular injection of FGFR1 inhibitor SU5402 down-regulated the expression of PI3K, p-Akt, Occludin, Claudin-5, and ZO-1 in the penumbra, which weakened the beneficial effects of recanalization on neurological outcomes after MCAO.
CONCLUSIONS
Delayed recanalization on the 3rd day after MCAO increases endogenous FGF21 in the penumbra and activates FGFR1/PI3K/Akt pathway, which attenuates BBB disruption in the penumbra and improves neurobehavior in MCAO rats.
Animals
;
Rats
;
Blood-Brain Barrier/metabolism*
;
Brain Ischemia
;
Claudin-5/metabolism*
;
Infarction, Middle Cerebral Artery/metabolism*
;
Ischemic Stroke/metabolism*
;
Occludin/metabolism*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Rats, Sprague-Dawley
;
Receptor, Fibroblast Growth Factor, Type 1/metabolism*
;
Reperfusion Injury/metabolism*
5.Zhizhu Decoction Alleviates Intestinal Barrier Damage via Regulating SIRT1/FoxO1 Signaling Pathway in Slow Transit Constipation Model Mice.
Yong WEN ; Yu ZHAN ; Shi-Yu TANG ; Fang LIU ; Qiu-Xiao WANG ; Peng-Fei KONG ; Xue-Gui TANG
Chinese journal of integrative medicine 2023;29(9):809-817
OBJECTIVE:
To explore the possible effects and mechanism of Zhizhu Decoction (ZZD) on the pathophysiology of slow transit constipation (STC).
METHODS:
A total of 54 C57BL/6 mice was randomly divided into the following 6 groups by a random number table, including control, STC model (model), positive control, and low-, medium- and high-doses ZZD treatment groups (5, 10, 20 g/kg, namely L, M-, and H-ZZD, respectively), 9 mice in each group. Following 2-week treatment, intestinal transport rate (ITR) and fecal water content were determined, and blood and colon tissue samples were collected. Hematoxylin-eosin and periodic acid-Schiff staining were performed to evaluate the morphology of colon tissues and calculate the number of goblet cells. To determine intestinal permeability, serum levels of lipopolysaccharide (LPS), low-density lipoprotein (LDL) and mannose were measured using enzyme-linked immunosorbent assay (ELISA). Western blot analysis was carried out to detect the expression levels of intestinal tight junction proteins zona-occludens-1 (ZO-1), claudin-1, occludin and recombinant mucin 2 (MUC2). The mRNA expression levels of inflammatory cytokines including tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, IL-4, IL-10 and IL-22 were determined using reverse transcription-quantitative reverse transcription reaction. Colon indexes of oxidative stress were measured by ELISA, and protein expression levels of colon silent information regulator 1/forkhead box O transcription factor 1 (SIRT1/FoxO1) antioxidant signaling pathway were detected by Western blot.
RESULTS:
Compared with the model group, ITR and fecal moisture were significantly enhanced in STC mice in the M-ZZD and H-ZZD groups (P<0.01). Additionally, ZZD treatment notably increased the thickness of mucosal and muscular tissue, elevated the number of goblet cells in the colon of STC mice, reduced the secretion levels of LPS, LDL and mannose, and upregulated ZO-1, claudin-1, occludin and MUC2 expressions in the colon in a dose-dependent manner, compared with the model group (P<0.05 or P<0.01). In addition, ZZD significantly attenuated intestinal inflammation and oxidative stress and activated the SIRT1/FoxO1 signaling pathway (P<0.05 or P<0.01).
CONCLUSION
ZZD exhibited beneficial effects on the intestinal system of STC mice and alleviated intestinal inflammation and oxidative stress via activating SIRT1/FoxO1 antioxidant signaling pathway in the colon.
Mice
;
Animals
;
Sirtuin 1/genetics*
;
Antioxidants
;
Occludin
;
Lipopolysaccharides
;
Claudin-1
;
Mannose
;
Mice, Inbred C57BL
;
Constipation/drug therapy*
;
Inflammation
;
Signal Transduction
6.Experimental study on effects of berberine combined with 6-shogaol on intestinal inflammation and flora in mice with ulcerative colitis.
Hai-Liang WEI ; Jing-Tao LI ; Zhi-Guo CHEN ; Shu-Guang YAN
China Journal of Chinese Materia Medica 2022;47(16):4418-4427
Cold-heat combination is a common method in the treatment of ulcerative colitis, which is represented by classic drug pair, Coptidis Rhizoma and Zingiberis Rhizoma.The present study explored the synergetic effects of berberine and 6-shogaol, the primary components of Coptidis Rhizoma and Zingiberis Rhizoma, respectively, on intestinal inflammation and intestinal flora in mice with ulcerative colitis to reveal the effect and mechanism of cold-heat combination in the treatment of ulcerative colitis.The ulcerative colitis model was induced by dextran sulfate sodium(DSS) in mice.The model mice were administered with berberine(100 mg·kg~(-1)), 6-shogaol(100 mg·kg~(-1)), and berberine(50 mg·kg~(-1)) combined 6-shogaol(50 mg·kg~(-1)) by gavage, once per day.After 20 days of drug administration, mouse serum, colon tissues, and feces were sampled.Hematoxylin-eosin(HE) staining was used to observe histopathological changes in colon tissues.Alcian blue/periodic acid-Schiff(AB/PAS) staining was used to observe the changes in the mucus layer of colon tissues.Enzyme-linked immunosorbent assay(ELISA) was employed to detect the serum content of tumor necrosis factor-α(TNF-α), interleukin-1β(IL-1β), and interleukin-6(IL-6).Immunohistochemical method was adopted to detect the protein expression of macrophage surface markers F4/80, mucin-2, claudin-1, and zonula occludens-1(ZO-1) in colon tissues.High-throughput Meta-amplicon library sequencing was used to detect changes in the intestinal flora of mice.The results indicated that the 6-shogaol group, the berberine group, and the combination group showed significantly relieved intestinal injury, reduced number of F4/80-labeled positive macrophages in colon tissues, increased protein expression of mucin-2, claudin-1, and ZO-1, and decreased serum le-vels of TNF-α, IL-1β, and IL-6.Shannon, Simpson, Chao, and Ace indexes of the intestinal flora of mice in the 6-shogaol group and the combination group significantly increased, and Chao and Ace indexes in the berberine group significantly increased.As revealed by the bioinformatics analysis of intestinal flora sequencing, the relative abundance of Verrucomicrobia at the phylum, class, and order levels decreased significantly in all treatment groups after drug administration, while that of Bacillibacteria gradually increased.In the 6-shogaol group and the combination group, Akkermansia muciniphila completely disappeared, but acid-producing bacillus still existed in large quantities.As concluded, both 6-shogaol and berberine can inhibit intestinal inflammation, reduce the infiltration and activation of macrophages, relieve intestinal damage, reduce intestinal permeability, improve the structure of flora, and promote intestinal microecological balance.The combined application of berberine and 6-shogaol has a significant synergistic effect.
Animals
;
Berberine/therapeutic use*
;
Catechols
;
Claudin-1/therapeutic use*
;
Colitis/metabolism*
;
Colitis, Ulcerative/metabolism*
;
Colon
;
Dextran Sulfate/metabolism*
;
Disease Models, Animal
;
Drugs, Chinese Herbal/pharmacology*
;
Inflammation/metabolism*
;
Interleukin-6/metabolism*
;
Mice
;
Mice, Inbred C57BL
;
Mucin-2/pharmacology*
;
Tumor Necrosis Factor-alpha/metabolism*
7.Protection of salidroside on endothelial cell barrier in cerebral ischemia-reperfusion model rats.
Wen-Ting SONG ; Hui CAO ; Ye-Hao ZHANG ; Xiao-Yu ZHENG ; Jian-Xun LIU
China Journal of Chinese Materia Medica 2022;47(19):5284-5291
This study aims to observe the therapeutic effect of salidroside on cerebral ischemia-reperfusion(I/R) model rats, and to specifically explore the protection of salidroside on endothelial cell barrier after I/R and the mechanism. In the experiment, SD rats were randomized into sham group, model group, and high-, medium-, and low-dose(10, 5, and 2.5 mg·kg~(-1)) salidroside groups. The suture method was used to induce I/R in rats. The infarct area, neurobehavioral evaluation, and brain water content were used to evaluate the efficacy of salidroside. As for the experiment on the mechanism, high-dose and low-dose salidroside groups were designed. The pathological morphology was observed based on hematoxylin and eosin(HE) staining, and ultrastructure of vascular endothelial cells based on transmission electron microscopy. The content of nitric oxide(NO) in serum, four indexes of blood coagulation, and the content of von Willebrand factor(vWF) in plasma were measured. Western blot(WB) and immunofluorescence(IF) were employed to determine the expression of tight junction proteins(ZO-1, occluding, and claudin-1) and matrix metalloproteinase 9(MMP-9) in the cortex. The results showed that the model group had obvious neurological deficit, obvious infarct in the right brain tissue, and significant increase in water content in brain tissue compared with the sham group. Compared with the model group, high-dose and low-dose salidroside groups showed decrease in neurobehavioral score, and the high-, medium-, and low-dose salidroside groups demonstrated obviously small infarct area and significant decrease in water content in brain tissue. The results of HE staining and transmission electron microscopy showed that rats had necrosis of neurons, damage of original physiological structure of endothelial cells, and disintegration of the tight junction between endothelial cells after I/R compared with the sham group. Compared with the model group, the high-dose and low-dose salidroside groups showed alleviation of neuron injury and intact physiological structure of endothelial cells. The model group had significantly lower serum level of NO, significantly higher plasma levels of vWF and fibrinogen(FIB), and significantly shorter thrombin time(TT) and prothrombin time(PT) than the sham group. Compared with model group, the high-dose and low-dose salidroside groups increased the serum content of NO in serum, decreased the plasma levels of FIB and vWF, and significantly prolonged TT and PT. WB and IF results showed that the model group had significantly lower levels of ZO-1, occluding, and claudin-1 among endothelial cells and significantly higher level of MMP-9 than the sham group. Compared with the model group, high-dose and low-dose salidroside significantly increased the levels of ZO-1, occluding, and claudin-1 in the cortex. The above experimental results show that salidroside has clear therapeutic effect on I/R rats and protects the brain. To be specific, it alleviates the damage of endothelial cells by increasing NO synthesis in endothelial cells, inhibiting coagulation reaction and MMP-9 expression, up-regulating the expression of ZO-1, occludin, and claudin-1, thereby protecting the brain.
Animals
;
Rats
;
Matrix Metalloproteinase 9/metabolism*
;
Endothelial Cells/metabolism*
;
Reperfusion Injury/metabolism*
;
Blood-Brain Barrier
;
Claudin-1/therapeutic use*
;
von Willebrand Factor/therapeutic use*
;
Rats, Sprague-Dawley
;
Brain Ischemia/metabolism*
;
Cerebral Infarction
;
Reperfusion
;
Water/metabolism*
8.Particulate Matter 2.5 Causes Deficiency in Barrier Integrity in Human Nasal Epithelial Cells
Mu XIAN ; Siyuan MA ; Kuiji WANG ; Hongfei LOU ; Yang WANG ; Luo ZHANG ; Chengshuo WANG ; Cezmi A AKDIS
Allergy, Asthma & Immunology Research 2020;12(1):56-71
PURPOSE: The effect of air pollution-related particulate matter (PM) on epithelial barrier function and tight junction (TJ) expression in human nasal mucosa has not been studied to date. This study therefore aimed to assess the direct impact of PM with an aerodynamic diameter less than 2.5 μm (PM2.5) on the barrier function and TJ molecular expression of human nasal epithelial cells. METHODS: Air-liquid interface cultures were established with epithelial cells derived from noninflammatory nasal mucosal tissue collected from patients undergoing paranasal sinus surgery. Confluent cultures were exposed to 50 or 100 µg/mL PM2.5 for up to 72 hours, and assessed for 1) epithelial barrier integrity as measured by transepithelial resistance (TER) and permeability of fluorescein isothiocyanate (FITC) 4 kDa; 2) expression of TJs using real-time quantitative polymerase chain reaction and immunofluorescence staining, and 3) proinflammatory cytokines by luminometric bead array or enzyme-linked immunosorbent assay. RESULTS: Compared to control medium, 50 and/or 100 µg/mL PM2.5-treatment 1) significantly decreased TER and increased FITC permeability, which could not be restored by budesonide pretreatment; 2) significantly decreased the expression of claudin-1 messenger RNA, claudin-1, occludin and ZO-1 protein; and 3) significantly increased production of the cytokines interleukin-8, TIMP metallopeptidase inhibitor 1 and thymic stromal lymphopoietin. CONCLUSIONS: Exposure to PM2.5 may lead to loss of barrier function in human nasal epithelium through decreased expression of TJ proteins and increased release of proinflammatory cytokines. These results suggest an important mechanism of susceptibility to rhinitis and rhinosinusitis in highly PM2.5-polluted areas.
Asthma
;
Budesonide
;
Claudin-1
;
Cytokines
;
Enzyme-Linked Immunosorbent Assay
;
Epithelial Cells
;
Fluorescein
;
Fluorescein-5-isothiocyanate
;
Fluorescent Antibody Technique
;
Humans
;
Interleukin-8
;
Mucous Membrane
;
Nasal Mucosa
;
Occludin
;
Particulate Matter
;
Permeability
;
Polymerase Chain Reaction
;
Rhinitis
;
RNA, Messenger
;
Tight Junctions
9.NFATC3–PLA2G15 Fusion Transcript Identified by RNA Sequencing Promotes Tumor Invasion and Proliferation in Colorectal Cancer Cell Lines.
Jee Eun JANG ; Hwang Phill KIM ; Sae Won HAN ; Hoon JANG ; Si Hyun LEE ; Sang Hyun SONG ; Duhee BANG ; Tae You KIM
Cancer Research and Treatment 2019;51(1):391-401
PURPOSE: This study was designed to identify novel fusion transcripts (FTs) and their functional significance in colorectal cancer (CRC) lines. MATERIALS AND METHODS: We performed paired-end RNA sequencing of 28 CRC cell lines. FT candidates were identified using TopHat-fusion, ChimeraScan, and FusionMap tools and further experimental validation was conducted through reverse transcription-polymerase chain reaction and Sanger sequencing. FT was depleted in human CRC line and the effects on cell proliferation, cell migration, and cell invasion were analyzed. RESULTS: One thousand three hundred eighty FT candidates were detected through bioinformatics filtering. We selected six candidate FTs, including four inter-chromosomal and two intrachromosomal FTs and each FT was found in at least one of the 28 cell lines. Moreover, when we tested 19 pairs of CRC tumor and adjacent normal tissue samples, NFATC3–PLA2G15 FT was found in two. Knockdown of NFATC3–PLA2G15 using siRNA reduced mRNA expression of epithelial–mesenchymal transition (EMT) markers such as vimentin, twist, and fibronectin and increased mesenchymal–epithelial transition markers of E-cadherin, claudin-1, and FOXC2 in colo-320 cell line harboring NFATC3–PLA2G15 FT. The NFATC3–PLA2G15 knockdown also inhibited invasion, colony formation capacity, and cell proliferation. CONCLUSION: These results suggest that that NFATC3–PLA2G15 FTs may contribute to tumor progression by enhancing invasion by EMT and proliferation.
Cadherins
;
Cell Line*
;
Cell Movement
;
Cell Proliferation
;
Claudin-1
;
Colorectal Neoplasms*
;
Computational Biology
;
Fibronectins
;
Humans
;
RNA*
;
RNA, Messenger
;
RNA, Small Interfering
;
Sequence Analysis, RNA*
;
Vimentin
10.Effects of Vitamin D Receptor on Mucosal Barrier Proteins in Colon Cells under Hypoxic Environment.
Zheng WANG ; Hong YANG ; Meng JIN ; Hui Min ZHANG ; Xuan Fu CHEN ; Mei Xu WU ; Ming Yue GUO ; Chang Zhi HUANG ; Jia Ming QIAN
Acta Academiae Medicinae Sinicae 2019;41(4):506-511
To investigate the expressions of mucosal barrier proteins in colon cell line DLD-1 under hypoxic environment and its mechanism. Methods After DLD-1 cells were treated separately with hypoxia(l% O),vitamin D(100 nmol/L),or vitamin D plus hypoxia for 48 hours,the expressions of vitamin D receptor(VDR),tight junction proteins zonula occludens-1(ZO-1),occludin,Claudin-1,and adherent junction protein(E-cadherin)were determined by Western blot.Stable VDR knock-down(Sh-VDR)DLD-1 cell line and control DLD-1 cell line were established by lentivirus package technology and the protein expressions after hypoxia treatment were detected. Results Compared with control group,the expressions of occludin,Claudin-1,and VDR increased significantly after hypoxia treatment(all <0.001).In addition to the protein expressions of occludin,Claudin-1 and VDR,the expressions of ZO-1 and E-cadherin were also obviously higher in vitamin D plus hypoxia group than in single vitamin D treatment group(all <0.001).After hypoxia treatment,Sh-VDR cell line showed significantly decreased expressions of ZO-1(<0.001),occludin(<0.05),Claudin-1(<0.01)and E-cadherin(<0.001)when compared with untreated Sh-VDR cell line. Conclusion VDR acts as a regulator for the expressions of intestinal mucosal barrier proteins under hypoxia environment in DLD-1 colon cell line,indicating that VDR pathway may be another important protective mechanism for gut barrier in low-oxygen environment.
Antigens, CD
;
metabolism
;
Cadherins
;
metabolism
;
Cell Hypoxia
;
Cell Line
;
Claudin-1
;
metabolism
;
Colon
;
cytology
;
Humans
;
Occludin
;
metabolism
;
Receptors, Calcitriol
;
metabolism
;
Tight Junctions
;
Vitamin D
;
pharmacology
;
Zonula Occludens-1 Protein
;
metabolism

Result Analysis
Print
Save
E-mail