1.Hsp70 Fused with the Envelope Glycoprotein E0 of Classical Swine Fever Virus Enhances Immune Responses in Balb/c Mice.
Qianqian XU ; Xiaomin ZHANG ; Jiao JING ; Baojun SHI ; Shiqi WANG ; Bin ZHOU ; Puyan CHEN
Chinese Journal of Virology 2015;31(4):363-369
Heat-shock protein (Hsp) 70 potentiates specific immune responses to some antigenic peptides fused to it. Here, the prokaryotic plasmids harboring the envelope glycoprotein E0 gene of classical swine fever virus (CSFV) and/or the Hsp70 gene of Haemophilus parasuis were constructed and expressed in Escherichia coli Rosseta 2(R2). The fusion proteins were then purified. Groups of Balb/c mice were immunized with these fusion proteins, respectively, and sera collected 7 days after the third immunization. Immune effects were determined via an enzyme-linked immunosorbent assay and flow cytometric analyses. E0-Hsp70 fusion protein and E0+Hsp70 mixture significantly improved the titer of E-specific antibody, levels of CD4+ and CD8+ T cells, and release of interferon-γ. These findings suggested that Hsp70 can significantly enhance the immune effects of the envelope glycoprotein E0 of CSFV, thereby laying the foundation of further application in pigs.
Animals
;
Antibodies, Viral
;
blood
;
CD4-Positive T-Lymphocytes
;
cytology
;
immunology
;
CD8-Positive T-Lymphocytes
;
cytology
;
immunology
;
Cell Proliferation
;
Classical swine fever virus
;
genetics
;
Female
;
HSP70 Heat-Shock Proteins
;
genetics
;
immunology
;
Haemophilus parasuis
;
genetics
;
Immunization
;
Interferon-gamma
;
metabolism
;
Mice
;
Mice, Inbred BALB C
;
Plasmids
;
genetics
;
Recombinant Fusion Proteins
;
genetics
;
immunology
;
Viral Envelope Proteins
;
genetics
2.Progress in new-type vaccines against classical swine fever.
Chunhua WANG ; Yuan SUN ; Huaji QIU
Chinese Journal of Biotechnology 2013;29(7):880-890
Classical swine fever (CSF), an acute and highly contagious disease of swine, is caused by classical swine fever virus. CSF is one of the most devastating diseases to the pig industry worldwide and results in serious economic losses. Currently prophylactic vaccination is still an important strategy for the control of CSF. Live attenuated vaccines (such as C-strain) are safe and effective. However, there are significant changes in the clinical features of CSF, displaying concurrent typical and atypical CSF, and simultaneous inapparent and persistent infections. Immunization failure has been reported frequently and it is difficult to distinguish between wild-type infected and vaccinated animals (DIVA). So there is an urgent need to develop more effective and safer DIVA or marker vaccines for the control of CSF. In this review, some of the most recent advances in new-type vaccines against CSF, including DNA vaccines, live virus-vectored vaccines, protein or peptide-based vaccines, gene-deleted vaccines and chimeric pestivirus-based vaccines, are reviewed and discussed.
Animals
;
Classical Swine Fever
;
prevention & control
;
Classical swine fever virus
;
Swine
;
Vaccination
;
veterinary
;
Vaccines, Attenuated
;
immunology
;
Vaccines, DNA
;
immunology
;
Vaccines, Subunit
;
immunology
;
Viral Vaccines
;
immunology
3.Establishment and characterization of an infectious cDNA clone of a classical swine fever virus LOM strain.
Gil Soon PARK ; Seong In LIM ; Seung Ho HONG ; Jae Young SONG
Journal of Veterinary Science 2012;13(1):81-91
Classical swine fever virus (CSFV) causes a highly contagious disease among swine that has an important economic impact worldwide. CSFV strain LOM is an attenuated virus of low virulent strain of Miyagi isolated from Japan in 1956. Eight DNA fragments representing the genome of the CSFV strain LOM were obtained by RT-PCR. These were used to determine the complete nucleotide sequence and construct a full-length cDNA clone which was called Flc-LOM. Sequence analysis of the recombinant clone (Flc-LOM) revealed the presence of eight mutations, resulting in two amino acid substitutions, when compared to the parental sequence. RNA transcripts of both LOM and Flc-LOM were directly infectious in PK-15 cells. The rescued Flc-LOM virus grew more slowly than the parental virus, LOM, in the cells. Intramuscular immunization with Flc-LOM was safe and highly immunogenic in pigs; no clinical signs or virus transmission to sentinel animals were observed after 35 days. CSFV-specific neutralizing antibodies were detected 14 days post-infection. After challenge with the virulent CSFV strain SW03, pigs immunized with Flc-LOM were shown to be fully protected. Thus, our newly established infectious clone of CSFV, Flc-LOM, could serve as a vaccine candidate.
Animals
;
Antibodies, Viral/blood
;
Base Sequence
;
Cell Line
;
Classical Swine Fever/immunology/*virology
;
Classical swine fever virus/*genetics/immunology/pathogenicity
;
Cloning, Molecular
;
DNA, Complementary/genetics/immunology
;
Immunization/methods/standards/veterinary
;
Molecular Sequence Data
;
Neutralization Tests/veterinary
;
RNA, Viral/chemistry/genetics
;
Recombinant Proteins/immunology
;
Reverse Transcriptase Polymerase Chain Reaction/veterinary
;
Sequence Analysis, DNA
;
Specific Pathogen-Free Organisms
;
Swine
;
Virulence
4.Construction and immunogenicity of a recombinant adenovirus co-expressing the E2 protein of classical swine fever virus and the porcine interleukin 2 in rabbits.
Lei HE ; Yan-ming ZHANG ; Yan-zhao XU ; Qing-hai TANG ; Jing WANG ; Xiao-yun YANG ; Chen DAI ; Hua XIANG ; Peng-xiang CHANG ; Zhi LIN
Chinese Journal of Virology 2010;26(5):385-391
To construct a recombinant adenovirus co-expressing the E2 protein of classical swine fever virus (CSFV) and the porcine interleukin 2 (pIL-2), the CSFV E2 gene and pIL-2 gene were amplified respectively from the plasmids pMD19-T-E2 and pMD19-T-pIL-2 by PCR. E2-pIL-2 fusion gene was obtained by using 5 consecutive glycine codons as a linker and cloned into the adenoviral shuttle plasmid AdTrack. The AdTrack-E2-pIL-2 was linearized and transformed into E. coli BJ5183 with the backbone plasmid AdEasy1. The resultant recombinant plasmid AdEasy-E2-pIL-2 was transfected into the 293 cells where the recombinant adenovirus rAd-E2-pIL-2 was produced. The immunogenicity of rAd-E2-pIL-2 was evaluated in rabbits. The results of RT-PCR and Western-blotting showed that rAd-E2-pIL-2 could carry and express E2 and pIL-2 proteins. The titer of the rAd-E2-pIL-2 was 10(8.12) PFU/mL. After immunized with rAd-E2pIL-2, The injected rabbits developed a high level of CSFV specific antibodies. Regular fever was not detected in the rAd-E2-pIL-2-immunized rabbits upon challenge with CSFV C stain, and specific lymphoproliferative responses to the CSFV was detected in the lymphocytes from the immunized rabbits. In conclusion, rAd-E2-pIL-2 was constructed successfully and it could be an attractive vaccine candidate against CSFV.
Adenoviridae
;
genetics
;
metabolism
;
Animals
;
Cell Line
;
Classical swine fever virus
;
genetics
;
Humans
;
Interleukin-2
;
genetics
;
immunology
;
Rabbits
;
Swine
;
Viral Proteins
;
genetics
;
immunology
;
metabolism
;
Viral Vaccines
;
immunology
5.The changes of peripheral blood leucocytes subpopulation after challenge with CSFV virulent strain Shimen.
Yuan-Cheng ZHOU ; Qin WANG ; Xue-Zheng FAN ; Lu XU ; Zhi-Wen XU ; Wan-Zhu GUO ; Jun LIU ; Lei CHEN ; Bo TANG
Chinese Journal of Virology 2009;25(4):303-308
To investigate the effects of classical swine fever virus (CSFV) virulent strain Shimen (SM) infection on piglets peripheral blood leucocytes, the 60-days weanling piglets were infected with the shinen strain and the peripheral blood samples of the piglets were collected to analyze the kinetics of the CSEV nucleic acid, the peripheral blood leucocytes subpopulation and SLA molecule expression on the peripheral blood leukocytes. The results showed that the piglets rectal temperature increased 48 hours after intramuscular injection of CSFV SM strain, the CSFV nucleic acid was detected in the peripheral blood at 2DPI, the content of CSFV nucleic acid increased and up-regulated to a peak at 6DPI as 10 (4.84 +/- 0.98 times as 2DPI. The amount of WBC, LYM and PLT significantly decreased, where in the amount of WBC decreased to 65.87% at 1DPI and 50% at 2DPI respectively; the amount of LYM decreased to 70.68%, 47.88% and 23.29% at 1DPI, 2DPI, and 3DPI, respectively; the amount of PLT decreased day by day and to 34.59% at 6DPI; the amount of NK, gammadeltaT, Tc, Th, CD3+ CD4+ CD8+ and CD3- CD4- CD8- cells decreased after infection; 78.49% of NK cells decreased at 1DPI and then there was no significant change from 2DPI to 6DPI. The amount of gammadeltaT, Tc, CD4- CD8- CD3-,CD4+ CD8+ CD3+ cells decreased to 41.74%, 43.83%, 15.87%, and 32.96% at 3DPI, respectively, However, the amount of T helper cells decreased continually to 42.95% at 6DPI; the amount of SLA I positive lymphocytes decreased significantly and the amount of SLA I positive CD3 cells decreased to 23.07% and 15.38% at 1DPI and 2DPI respectively; the SLA I positive granulocytes increased continually from 92.20% at 1DPI to 98.30% at 3DPI; the amount of CD3 SLA II + cells in lymphocytes decreased from 1.38% at 1DPI to 0.22% at 2DPI, while the SLA II + granulocytes increased continually to a peak at 3DPI and 53.76% of granulocytes expressed the SLA II molecule, but the percentage of the granulocytes expressing SLA II molecules decreased to 12.54% and 4.06% at 4DPI and 5DPI respectively. The study indicated that the CSFV SM strain infection could escape the immune surveillance and cause immunosuppression through inhibiting the host's innate antiviral immunity and the SLA molecule expression to affect the antigen presentation.
Animals
;
Cells, Cultured
;
Classical Swine Fever
;
genetics
;
immunology
;
virology
;
Classical swine fever virus
;
pathogenicity
;
physiology
;
Gene Expression
;
Histocompatibility Antigens Class I
;
genetics
;
immunology
;
Histocompatibility Antigens Class II
;
Leukocyte Count
;
Leukocytes
;
immunology
;
virology
;
Random Allocation
;
Swine
;
Virulence
6.A prime-boost vaccination strategy using a Semliki Forest virus replicon vectored DNA vaccine followed by a recombinant adenovirus protects pigs from classical swine fever.
Yuan SUN ; Dafei LIU ; Yufei WANG ; Na LI ; Hongyu LI ; Bingbing LIANG ; Huaji QIU
Chinese Journal of Biotechnology 2009;25(5):679-685
We have previously evaluated a Semliki Forest virus (SFV) replicon vectored DNA vaccine (pSFV1CS2-E2) and a recombinant adenovirus (rAdV-E2) expressing the E2 glycoprotein of classical swine fever virus (CSFV) in pigs. The results showed that the immunized pigs were protected from virulent challenge, but few pigs showed short-term fever and occasional pathological changes following virulent challenge. To enhance the immunogenecity of the vaccines, we tried a prime-boost vaccination strategy using a combination of prime with pSFV1CS2-E2 followed by boost with rAdV-E2. The results showed that all the immunized pigs developed high-level CSFV-specific antibodies following prime-boost immunization. When challenged with virulent CSFV, the immunized pigs (n = 5) from the heterologous boost group showed no clinical symptoms, and CSFV RNA was not detected following challenge, whereas one of five pigs from the homologous boost group developed short-term fever and CSFV RNA was detected. This demonstrates that the heterologous prime-boost vaccination regime has the potential to prevent against virulent challenge.
Adenoviridae
;
genetics
;
metabolism
;
Adenovirus E2 Proteins
;
genetics
;
immunology
;
Animals
;
Classical Swine Fever
;
immunology
;
prevention & control
;
Classical swine fever virus
;
genetics
;
immunology
;
Genetic Vectors
;
Immunization, Secondary
;
Replicon
;
genetics
;
Semliki forest virus
;
genetics
;
metabolism
;
Swine
;
Vaccines, DNA
;
immunology
;
Viral Envelope Proteins
;
genetics
;
metabolism
;
Viral Vaccines
;
immunology
7.Applications of reverse genetics in studying classical swine fever virus.
Dafei LIU ; Yuan SUN ; Huaji QIU
Chinese Journal of Biotechnology 2009;25(10):1441-1448
Classical swine fever (CSF), caused by classical swine fever virus (CSFV), has been epidemic or endemic in many countries, and causes great economical losses to pig industry worldwide. Attenuated vaccines (such as C-strain) have played an important role in the control of CSF. Recently some new phenomena appear, such as atypical and persistent infections of CSF, immunization failure and so on. Meanwhile, eradication programs have been implemented in many countries, restricting the widespread applications of attenuated vaccines. Thus, currently the priority is to strengthen the research in pathogenesis and transmission mechanisms, as well as to develop marker vaccines. Recently, the applications of reverse genetics technology open up a new way for research of structure and function of CSFV proteins and development of novel vaccines against CSF. This review focuses on the progress of applications of reverse genetics in the functional analysis and marker vaccine development of CSFV, and also discusses the problems confronted now and prospective aspects in the study of CSFV.
Classical swine fever virus
;
genetics
;
Cloning, Molecular
;
Genetics, Microbial
;
methods
;
RNA, Viral
;
genetics
;
Recombination, Genetic
;
Vaccines, Synthetic
;
biosynthesis
;
immunology
;
Viral Vaccines
;
biosynthesis
;
genetics
8.Expression profiles of apoptotic genes of pig peripheral blood leukocytes caused by classical swine fever virus infection.
Zi-Xue SHI ; Jin-Fu SUN ; Huan-Cheng GUO ; Chang-Chun TU
Chinese Journal of Virology 2008;24(6):456-463
Classical swine fever (CSF) is a contagious swine disease charactered by hemorrhagic fever and leukopenia,usually leading to substantial economic losses. To obtain a insight of leucopenia caused by CSFV infection, DNA microarray analyses of peripheral blood leucocytes (PBL) of the infected pigs was performed. Three health pigs were inoculated with a lethal dose of CSFV Shimen strain and their PBLs were isolated when the onset of typical clinical signs and then subjected to total RNA extraction followed by microarray analysis with Affymetrix Porcine Genome Array GeneChips. The results showed that the significant differences were observed in cellular apoptotic genes expression at 7 days post-infection (p. i.). The changes of the genes expression were confirmed by real time RT-PCR of some selected apoptosis-related genes. This study provided a valuable information for further investigating the molecular mechanism of apoptosis caused by CSFV infection.
Animals
;
Apoptosis
;
Cells, Cultured
;
Classical Swine Fever
;
genetics
;
immunology
;
virology
;
Classical swine fever virus
;
immunology
;
physiology
;
Gene Expression Profiling
;
Leukocytes, Mononuclear
;
cytology
;
immunology
;
virology
;
Molecular Sequence Data
;
Oligonucleotide Array Sequence Analysis
;
Sus scrofa
9.Construction of recombinant fowlpox virus expressing E0 gene of classical swine fever virus shimen strain and the animal immunity experiment.
Yang-Hui WANG ; Pu-Hua LI ; Miao-Tao ZHANG ; Yan-Ming ZHANG
Chinese Journal of Virology 2008;24(1):59-63
The CSFV E0 gene was amplified from the plasmid pMD18-T-E0 by PCR and cloned into the FPV-P11 and FPV-pSY. The identified recombinant DNA was transfected into chicken embryo fibroblasts (CEF) to package Fowlpox virus. E0 gene was confirmed to be integrated into the genome of recombinant Fowlpox virus by PCR, and Western blot was employed for detection of E0 expression in the chicken embryo fibroblasts infected with recombinant Fowlpox virus . The results of ELISA showed that systemic immune response to CSFV could be induced effectively after the mice were immunized three times with recombinant Fowlpox virus through celiac route, the titer of antibody was 1 : 4096. The protection experiment showed that 75% of piglets immunized three times with recombinant Fowlpox virus were survived, indicating that the recombinant Fowlpox virus was effective. This paper lays foundation for the study of CSFV live vector vaccine.
Animals
;
Blotting, Western
;
Chick Embryo
;
Classical swine fever virus
;
genetics
;
immunology
;
Enzyme-Linked Immunosorbent Assay
;
Female
;
Fowlpox virus
;
genetics
;
Mice
;
Mice, Inbred BALB C
;
Polymerase Chain Reaction
;
Swine
;
Vaccines, Synthetic
;
immunology
;
Viral Envelope Proteins
;
genetics
;
immunology
;
Viral Vaccines
;
immunology
10.Alphavirus replicon-vectored plasmid DNA-based vaccine elicits protective immunity against classical swine fever virus.
Na LI ; Jian-Jun ZHAO ; He-Ping ZHAO ; Yuan SUN ; Qing-Hu ZHU ; Guang-Zhi TONG ; Hua-Ji QIU
Chinese Journal of Biotechnology 2007;23(3):434-439
We have shown previously that a Semliki Forest virus (SFV) replicon vectored DNA vaccine (pSFV1CS-E2) expressing the E2 glycoprotein of classical swine fever virus (CSFV) conferred full protection for pigs immunized three times with 600 microg of the vaccine. This study aims to evaluate the efficacy of the DNA vaccine with lower dosage and fewer inoculations. Pigs were immunized twice with 100 microg pSFV1CS-E2 (n = 5) or control plasmid pSFV1CS (n = 3), respectively. Pigs immunized with pSFV1CS-E2 developed high titers of specific neutralizing antibodies against CSFV after the booster, and the antibody titers increased rapidly upon challenge. The immunized animals showed no clinical symptoms except short-term fever and low-level viremia, whereas the control pigs immunized with the control plasmid produced no detectable antibody before challenge and showed obvious clinical signs following challenge, and 2 pigs died on 10 or 11 days post-challenge. All control animals developed extended viremia as detected by nested RT-PCR and real-time RT-PCR. Severe pathologic lesions typical of CSFV infection were observed at necropsy. We conclude that the alphavirus replicon-vectored DNA-based vaccine can be potential marker vaccine against CSFV.
Animals
;
Antibodies, Neutralizing
;
blood
;
immunology
;
Antibodies, Viral
;
blood
;
immunology
;
Body Temperature
;
immunology
;
Classical Swine Fever
;
blood
;
immunology
;
prevention & control
;
Classical swine fever virus
;
genetics
;
immunology
;
Genetic Vectors
;
genetics
;
Immunization
;
Plasmids
;
genetics
;
Replicon
;
genetics
;
Reverse Transcriptase Polymerase Chain Reaction
;
Semliki forest virus
;
genetics
;
Swine
;
virology
;
Time Factors
;
Vaccines, DNA
;
administration & dosage
;
genetics
;
immunology
;
Viral Envelope Proteins
;
genetics
;
immunology
;
Viremia
;
genetics
;
immunology

Result Analysis
Print
Save
E-mail