1.The potential efficacy of the E2-subunit vaccine to protect pigs against different genotypes of classical swine fever virus circulating in Vietnam
Ha Thi Thanh TRAN ; Duc Anh TRUONG ; Viet Duc LY ; Hao Thi VU ; Tuan Van HOANG ; Chinh Thi NGUYEN ; Nhu Thi CHU ; Vinh The NGUYEN ; Duyen Thuy NGUYEN ; Kohtaroh MIYAZAWA ; Takehiro KOKUHO ; Hoang Vu DANG
Clinical and Experimental Vaccine Research 2020;9(1):26-39
classical swine fever (CSF) vaccines have been developed to protect against this disease. However, the efficacy of these vaccines to protect the pig against field CSF strains needs to be considered, based on circulating strains of classical swine fever virus (CSFV).MATERIALS AND METHODS: Recombinant E2-CSFV protein produced by baculovirus/insect cell system was analyzed by western blots and immunoperoxidase monolayer assay. The effect of CSFV-E2 subunit vaccines was evaluated in experimental pigs with three genotypes of CSFV challenge. Anti-E2 specific and neutralizing antibodies in experimental pigs were analyzed by blocking enzyme-linked immunosorbent assay and neutralization peroxidize-linked assay.RESULTS: The data showed that CSFV VN91-E2 subunit vaccine provided clinical protection in pigs against three different genotypes of CSFV without noticeable clinical signs, symptoms, and mortality. In addition, no CSFV was isolated from the spleen of the vaccinated pigs. However, the unvaccinated pigs exhibited high clinical scores and the successful virus isolation from spleen. These results showed that the E2-specific and neutralizing antibodies induced by VN91-E2 antigen appeared at day 24 after first boost and a significant increase was observed at day 28 (p<0.01). This response reached a peak at day 35 and continued until day 63 when compared to controls. Importantly, VN91-E2 induced E2-specific and neutralizing antibodies protected experimental pigs against high virulence of CSFVs circulating in Vietnam, including genotype 1.1, 2.1, and 2.2.CONCLUSION: These findings also suggested that CSFV VN91-E2 subunit vaccine could be a promising vaccine candidate for the control and prevention of CSFV in Vietnam.]]>
Animals
;
Antibodies, Neutralizing
;
Blotting, Western
;
Classical swine fever virus
;
Classical Swine Fever
;
Enzyme-Linked Immunosorbent Assay
;
Genotype
;
Mortality
;
Spleen
;
Swine
;
Vaccines
;
Vaccines, Subunit
;
Vietnam
;
Virulence
2.Histopathological Evaluation of the Efficacy for Plant-produced E2 Protein Vaccine against Classical Swine Fever Virus (CSFV) in Piglets
Sun Young KIM ; Bo Kyoung JUNG ; Gyu Nam PARK ; Hye Ran KIM ; Dong Jun AN ; Eun Ju SHON ; Kyung Soo CHANG
Journal of Bacteriology and Virology 2019;49(3):133-140
Classical swine fever (CSF), previously known as hog cholera, remains one of the most important swine-related contagious diseases worldwide. In order to eradicate classical swine fever virus (CSFV), it is commonly used in LOM-850 strain as a live attenuated CSF vaccine. However, there are symptoms of vaccination, such as the depression of feed intake, and difficulty of differentiation between infected and vaccinated hosts is impossible based on the antibodies induced. Nicotiana benthamiana were considered as an alternative to the production of recombinant vaccines on account of higher yields and levels of soluble protein than other models and crops in protein recombinant products. This study was conducted to evaluate histopathological validation of the plant-produced E2 fusion protein (ppE2) in piglets. The piglets were challenged by an injection of YC11WB strain in 7 days, 11 days and 14 days after one shot of the vaccination. The histopathological examination indicated that ppE2 can protect against lethal CSFV challenge at least 11 days of vaccination in piglets. These data suggest that the ppE2 can be an effective vaccine against CSFV in piglets.
Animals
;
Antibodies
;
Classical swine fever virus
;
Classical Swine Fever
;
Depression
;
Swine
;
Tobacco
;
Vaccination
;
Vaccines, Synthetic
3.Antigenic characterization of classical swine fever virus YC11WB isolates from wild boar.
Seong In LIM ; Yong Kwan KIM ; Ji Ae LIM ; Song Hee HAN ; Hee Suk HYUN ; Ki Sun KIM ; Bang Hun HYUN ; Jae Jo KIM ; In Soo CHO ; Jae Young SONG ; Sung Hyun CHOI ; Seung Hoe KIM ; Dong Jun AN
Journal of Veterinary Science 2017;18(2):201-207
Classical swine fever (CSF), a highly contagious disease that affects domestic pigs and wild boar, has serious economic implications. The present study examined the virulence and transmission of CSF virus strain YC11WB (isolated from a wild boar in 2011) in breeding wild boar. Virulence of strain YC11WB in domestic pigs was also examined. Based on the severe clinical signs and high mortality observed among breeding wild boar, the pathogenicity of strain YC11WB resembled that of typical acute CSF. Surprisingly, in contrast to strain SW03 (isolated from breeding pigs in 2003), strain YC11WB showed both acute and strong virulence in breeding pigs. None of three specific monoclonal antibodies (7F2, 7F83, and 6F65) raised against the B/C domain of the SW03 E2 protein bound to the B/C domain of strain YC11WB due to amino acid mutations (⁷²⁰K→R and ⁷²³N→S) in the YC11WB E2 protein. Although strains YC11WB and SW03 belong to subgroup 2.1b, they had different mortality rates in breeding pigs. Thus, if breeding pigs have not developed protective immunity against CSF virus, they may be susceptible to strain YC11WB transmitted by wild boar, resulting in severe economic losses for the pig industry.
Animals
;
Antibodies, Monoclonal
;
Breeding
;
Classical swine fever virus*
;
Classical Swine Fever*
;
Mortality
;
Sus scrofa*
;
Swine
;
Virulence
4.Research Progress in the Core Proteins of the Classical Swine Fever Virus.
Yuzhen HOU ; Dantong ZHAO ; Guoying LIU ; Fan HE ; Bin LIU ; Shaoyin FU ; Yongqing HAO ; Wenguang ZHANG
Chinese Journal of Virology 2015;31(5):579-584
The core protein (CP) of the classical swine fever virus (CSFV) is one of its structural proteins. Apart from forming the nucleocapsid to protect internal viral genomic RNA, this protein is involved in transcriptional regulation. Also, during viral infection, the CP is involved in interactions with many host proteins. In this review, we combine study of this protein with its disorders, structural/functional characteristics, as well as its interactions with the non-structural proteins NS3, NS5B and host proteins such as SUMO-1, UBC9, OS9 and IQGAP1. We also summarize the important part played by the CP in CSFV pathogenicity, virulence and replication of genomic RNA. We also provide guidelines for further studies in the CP of the CSFV.
Animals
;
Classical Swine Fever
;
virology
;
Classical swine fever virus
;
genetics
;
metabolism
;
pathogenicity
;
Genome, Viral
;
Swine
;
Viral Core Proteins
;
chemistry
;
genetics
;
metabolism
;
Virulence
5.Hsp70 Fused with the Envelope Glycoprotein E0 of Classical Swine Fever Virus Enhances Immune Responses in Balb/c Mice.
Qianqian XU ; Xiaomin ZHANG ; Jiao JING ; Baojun SHI ; Shiqi WANG ; Bin ZHOU ; Puyan CHEN
Chinese Journal of Virology 2015;31(4):363-369
Heat-shock protein (Hsp) 70 potentiates specific immune responses to some antigenic peptides fused to it. Here, the prokaryotic plasmids harboring the envelope glycoprotein E0 gene of classical swine fever virus (CSFV) and/or the Hsp70 gene of Haemophilus parasuis were constructed and expressed in Escherichia coli Rosseta 2(R2). The fusion proteins were then purified. Groups of Balb/c mice were immunized with these fusion proteins, respectively, and sera collected 7 days after the third immunization. Immune effects were determined via an enzyme-linked immunosorbent assay and flow cytometric analyses. E0-Hsp70 fusion protein and E0+Hsp70 mixture significantly improved the titer of E-specific antibody, levels of CD4+ and CD8+ T cells, and release of interferon-γ. These findings suggested that Hsp70 can significantly enhance the immune effects of the envelope glycoprotein E0 of CSFV, thereby laying the foundation of further application in pigs.
Animals
;
Antibodies, Viral
;
blood
;
CD4-Positive T-Lymphocytes
;
cytology
;
immunology
;
CD8-Positive T-Lymphocytes
;
cytology
;
immunology
;
Cell Proliferation
;
Classical swine fever virus
;
genetics
;
Female
;
HSP70 Heat-Shock Proteins
;
genetics
;
immunology
;
Haemophilus parasuis
;
genetics
;
Immunization
;
Interferon-gamma
;
metabolism
;
Mice
;
Mice, Inbred BALB C
;
Plasmids
;
genetics
;
Recombinant Fusion Proteins
;
genetics
;
immunology
;
Viral Envelope Proteins
;
genetics
6.Progress in new-type vaccines against classical swine fever.
Chunhua WANG ; Yuan SUN ; Huaji QIU
Chinese Journal of Biotechnology 2013;29(7):880-890
Classical swine fever (CSF), an acute and highly contagious disease of swine, is caused by classical swine fever virus. CSF is one of the most devastating diseases to the pig industry worldwide and results in serious economic losses. Currently prophylactic vaccination is still an important strategy for the control of CSF. Live attenuated vaccines (such as C-strain) are safe and effective. However, there are significant changes in the clinical features of CSF, displaying concurrent typical and atypical CSF, and simultaneous inapparent and persistent infections. Immunization failure has been reported frequently and it is difficult to distinguish between wild-type infected and vaccinated animals (DIVA). So there is an urgent need to develop more effective and safer DIVA or marker vaccines for the control of CSF. In this review, some of the most recent advances in new-type vaccines against CSF, including DNA vaccines, live virus-vectored vaccines, protein or peptide-based vaccines, gene-deleted vaccines and chimeric pestivirus-based vaccines, are reviewed and discussed.
Animals
;
Classical Swine Fever
;
prevention & control
;
Classical swine fever virus
;
Swine
;
Vaccination
;
veterinary
;
Vaccines, Attenuated
;
immunology
;
Vaccines, DNA
;
immunology
;
Vaccines, Subunit
;
immunology
;
Viral Vaccines
;
immunology
7.Establishment and characterization of an infectious cDNA clone of a classical swine fever virus LOM strain.
Gil Soon PARK ; Seong In LIM ; Seung Ho HONG ; Jae Young SONG
Journal of Veterinary Science 2012;13(1):81-91
Classical swine fever virus (CSFV) causes a highly contagious disease among swine that has an important economic impact worldwide. CSFV strain LOM is an attenuated virus of low virulent strain of Miyagi isolated from Japan in 1956. Eight DNA fragments representing the genome of the CSFV strain LOM were obtained by RT-PCR. These were used to determine the complete nucleotide sequence and construct a full-length cDNA clone which was called Flc-LOM. Sequence analysis of the recombinant clone (Flc-LOM) revealed the presence of eight mutations, resulting in two amino acid substitutions, when compared to the parental sequence. RNA transcripts of both LOM and Flc-LOM were directly infectious in PK-15 cells. The rescued Flc-LOM virus grew more slowly than the parental virus, LOM, in the cells. Intramuscular immunization with Flc-LOM was safe and highly immunogenic in pigs; no clinical signs or virus transmission to sentinel animals were observed after 35 days. CSFV-specific neutralizing antibodies were detected 14 days post-infection. After challenge with the virulent CSFV strain SW03, pigs immunized with Flc-LOM were shown to be fully protected. Thus, our newly established infectious clone of CSFV, Flc-LOM, could serve as a vaccine candidate.
Animals
;
Antibodies, Viral/blood
;
Base Sequence
;
Cell Line
;
Classical Swine Fever/immunology/*virology
;
Classical swine fever virus/*genetics/immunology/pathogenicity
;
Cloning, Molecular
;
DNA, Complementary/genetics/immunology
;
Immunization/methods/standards/veterinary
;
Molecular Sequence Data
;
Neutralization Tests/veterinary
;
RNA, Viral/chemistry/genetics
;
Recombinant Proteins/immunology
;
Reverse Transcriptase Polymerase Chain Reaction/veterinary
;
Sequence Analysis, DNA
;
Specific Pathogen-Free Organisms
;
Swine
;
Virulence
8.Quantitative detection of anti-classical swine fever virus siRNA expression in cells by stem-loop RT-qPCR.
Shuai LIU ; Jiangnan LI ; Ting YUAN ; Fanli YANG ; Daxin PANG ; Changchun TU
Chinese Journal of Biotechnology 2012;28(1):26-36
RNA interference (RNAi) is a promising technology in development of specific antiviral therapy, but the quantitative detection of small interfering RNA (siRNA) expressed in vivo is the main challenge to assess its antiviral effect. In order to detect the siRNA molecules (siN1 and SiN2) particularly expressed in cells to inhibit the replication of classical swine fever virus (CSFV), serial specific stem-loop primers were designed and synthesized. Two of them (SLP-N1-6 and SLP-N2-8) were selected by screening in cross combination and successfully used in establishment of an optimal stem-loop RT-qPCR, which showed high specificity and sensitivity in detection of anti-CSFV siRNA expressed in PK-15 cells. The method was capable of detecting 10(2) to 10(8) copies of siRNA molecule with good parallel relationship (R(sq) = 0.999) and high amplification efficiency (Eff. = 98.2%). Therefore, the established stem-loop RT-qPCR can be used as an ideal tool in quantitative assessment of the anti-CSFV effects of RNAi in combination with detection of viral antigens using indirect immunofluorescent assay and TCID50, providing a novel technique for evaluating the antiviral effects of the siRNA expressed in anti-CSFV transgenic pigs to be established in future.
Animals
;
Cell Line
;
Classical swine fever virus
;
genetics
;
isolation & purification
;
metabolism
;
RNA Interference
;
RNA, Small Interfering
;
analysis
;
genetics
;
metabolism
;
RNA, Viral
;
genetics
;
Real-Time Polymerase Chain Reaction
;
methods
;
Swine
;
Transfection
;
Viral Nonstructural Proteins
;
genetics
;
metabolism
;
Virus Replication
9.Analysis of in vitro apoptosis induced by virulent Korean isolate of classical swine fever virus in peripheral blood B cell line.
Seon Mi KIM ; Seong In LIM ; Jae Young SONG ; Bang Hun HYUN
Korean Journal of Veterinary Research 2012;52(4):259-262
Classical swine fever (CSF) is a highly contagious disease among swine that has an important economic impact on worldwide. One clinical symptom of CSF is leukopenia, in particular lymphopenia, which is a characteristic event that occurs early in the course of CSF. Though lymphopenia associated with apoptosis, the pathogenic mechanism underlying the lymphopenia has not been well studied. To understand these mechanisms, we investigated the response of porcine B cell lines to infection with SW03, virulent strain isolated from swine tissue in Korea. This study demonstrated that SW03-infected L35 cell were induced apoptosis through the detection of activated caspase-3. In addition, SW03 infection leaded to alterations in pro-apoptotic, Bax, and anti-apoptotic, Bcl-xL proteins of Bcl-2 family. Our results would suggest that SW03-infected L35 cells induced apoptosis via intrinsic mitochondrial pathway.
Animals
;
Apoptosis
;
bcl-X Protein
;
Caspase 3
;
Cell Line
;
Classical Swine Fever
;
Classical swine fever virus
;
Humans
;
Korea
;
Leukopenia
;
Lymphopenia
;
Phenylurea Compounds
;
Sprains and Strains
;
Swine
10.Selection of a Less Pathogenic BVDV Strain for the Construction of Avirulent Chimeric Pestivirus.
Jaejo KIM ; Seong In LIM ; Dong Seob TARK ; Jae Young SONG ; Byounghan KIM
Journal of Bacteriology and Virology 2010;40(1):39-47
To select a less pathogenic bovine viral diarrhea virus (BVDV) strain for the construction of chimeric pestivirus harboring classical swine fever virus (CSFV) E2 gene, five Korean BVDV isolates (four type 1 isolates and a type 2 isolate) were evaluated for their pathological and biological properties with respect to porcine infection. Each of five groups of 100-day-old pigs was inoculated intranasally with one of the five BVDV isolates. No clinical sign or leukopenia was observed in any pig throughout the duration of the experiment, but viruses were detected in blood, nasal discharges and postmortem samples using RT-PCR. These results indicated that although the five BVD viruses could infect pigs, they did not cause clinically apparent symptoms. Because of its proper infection dynamics shown in this preliminary animal study and its fast growth rate and quick CPE in cell culture, one isolate (KD26-1) was chosen among the five isolates to test its virulence and immunogenic properties in 40-day-old piglets. Neither clinical sign nor pathological lesion was observed in 40-day-old piglets during the course of infection of isolate KD26-1. The first neutralizing antibodies were detectable 14 days post-inoculation (PI) and increased to 1:128~1:256 28 days PI. A BVDV specific gene was detectable by RT-PCR in tonsil, spleen, inguinal lymph node and brain until 14 days PI. According to this study, it can be concluded that isolate KD26-1 has little pathological effect in pigs and is a candidate for construction of chimeric pestivirus harboring CSFV E2 gene.
Animals
;
Antibodies, Neutralizing
;
Brain
;
Cell Culture Techniques
;
Classical swine fever virus
;
Diarrhea
;
Leukopenia
;
Lymph Nodes
;
Palatine Tonsil
;
Pestivirus
;
Spleen
;
Sprains and Strains
;
Swine
;
Viruses

Result Analysis
Print
Save
E-mail