1.Heart rate variability analysis to investigate autonomic nervous system activity among the three premature ventricular complex circadian types: An observational study
Novita G. Liman ; Sunu B. Raharjo ; Ina Susianti Timan ; Franciscus D. Suyatna ; Salim Harris ; Joedo Prihartono ; Kristiana Siste ; Mohammad Saifur Rohman ; Bambang Budi Siswanto
Acta Medica Philippina 2024;58(Early Access 2024):1-8
Background and Objective:
Premature ventricular complex (PVC) burden exhibits one of three circadian types,
classified as fast-type, slow-type, and independent-type PVC. It is unknown whether PVC circadian types have
different heart rate variability (HRV) parameter values. Therefore, this study aimed to evaluate differences in HRV
circadian rhythm among fast-, slow-, and independent-type PVC.
Methods:
This cross-sectional observational study consecutively recruited 65 idiopathic PVC subjects (23 fast-,
20 slow-, and 22 independent-type) as well as five control subjects. Each subject underwent a 24-hour Holter to examine PVC burden and HRV. HRV analysis included components that primarily reflect global, parasympathetic, and sympathetic activities. Repeated measures analysis of variance was used to compare
differences in HRV circadian rhythm by PVC type. Results. The average PVC burden was 15.7%, 8.4%, and 13.6% in fast-, slow-, and independent-type idiopathic PVC subjects, respectively. Global, parasympathetic nervous system, and sympathetic nervous system HRV parameters were significantly lower in independenttype PVC versus fast- and slow-type PVC throughout the day and night. Furthermore, we unexpectedly found that tendency towards sympathetic activity dominance during nighttime was only in independent-type PVC.
Conclusion
The HRV parameters are reduced in patients with independent-type PVC compared to fast- and slowtype PVC. Future research is warranted to determine possible differences in the prognosis between the three PVC types.
Ventricular Premature Complexes
;
Circadian Rhythm
;
Autonomic Nervous System
2.Circadian rhythm and health: dialogue between traditional Chinese medicine and modern medicine.
Yu-Juan YI ; Kang SUN ; Hong TANG ; Peng-Lai PI ; Shu-Yi ZHANG ; Jia LI ; Zheng SUN
China Journal of Chinese Materia Medica 2023;48(21):5681-5689
Circadian rhythm refers to the daily rhythmic variations in an organism. The irregular lifestyles of modern humans have led to a high incidence of chronic diseases, highlighting an inseparable relationship between disrupted circadian rhythm and disease development. TCM has long discussed rhythmic variations, with records dating back to the Yellow Emperor's Inner Canon(Huang Di Nei Jing), which laid a rich theoretical foundation for the research on circadian rhythm. Modern medical research has provided a more comprehensive explanation of its molecular mechanisms. This article integrated the current understanding of circadian rhythm in both Chinese and western medicine, emphasizing the crucial relationship between rhythm regulation and disease treatment. By highlighting the interdisciplinary nature of the two fields, it offers new directions for exploring the field of chronomedicine.
Humans
;
Medicine, Chinese Traditional
;
Acupuncture Therapy
;
Circadian Rhythm
;
Biomedical Research
;
Polygonatum
3.Regulation of ischemic stroke by circadian rhythm and intervention by traditional Chinese medicine.
Zhong LI ; Li-Juan LIU ; Si-Yang YAN ; Xiao-Feng GAO ; Fu-Kang ZENG ; De-Sheng ZHOU ; Yu-Xing ZHANG
China Journal of Chinese Materia Medica 2023;48(3):569-578
Circadian rhythm is an internal regulatory mechanism formed in organisms in response to the circadian periodicity in the environment, which modulates the pathophysiological events, occurrence and development of diseases, and the response to treatment in mammals. It significantly influences the susceptibility, injury, and recovery of ischemic stroke, and the response to therapy. Accumulating evidence indicates that circadian rhythms not only regulate the important physiological factors of ischemic stroke events, such as blood pressure and coagulation-fibrinolysis system, but also participate in the immuno-inflammatory reaction mediated by glial cells and peripheral immune cells after ischemic injury and the regulation of neurovascular unit(NVU). This article aims to link molecular, cellular, and physiological pathways in circadian biology to the clinical consequences of ischemic stroke and to illustrate the impact of circadian rhythms on ischemic stroke pathogenesis, the regulation of NVU, and the immuno-inflammatory responses. The regulation of circadian rhythm by traditional Chinese medicine is reviewed, and the research progress of traditional Chinese medicine intervention in circadian rhythm is summarized to provide a reasonable and valuable reference for the follow-up traditional Chinese medicine research and molecular mechanism research of circadian rhythm.
Animals
;
Ischemic Stroke
;
Medicine, Chinese Traditional
;
Circadian Rhythm
;
Blood Coagulation
;
Blood Pressure
;
Mammals
4.Effects of circadian rhythm on the development of dental hard tissues.
Chinese Journal of Stomatology 2023;58(1):11-16
Circadian rhythm is regulated by circadian clock, which is formed by the body response to external cyclic stimuli through the endogenous circadian clock. Circadian rhythm disturbance is closely related to the risks of a variety of diseases, and its impact on oral health cannot be ignored. Exploring the relationship and related molecular mechanism between circadian rhythm and dental hard tissues development are helpful to deeply understand the pathogenesis of developmental defects on these tissues, which could provide a theoretical basis for prevention and treatment on disorders of dental hard tissues. In order to provide guidance for the disease prevention and treatment, based on the summarization of current research progress, this paper focuses on the involvement of biorhythm in the development of tooth hard tissues as well as the disturbance of circadian rhythm on the formation of enamel and dentin, and analyzes the related regulating mechanism of circadian rhythm and genes during the development of tooth hard tissues.
Circadian Rhythm/genetics*
;
Dental Enamel
;
Oral Health
5.Circadian rhythm in prostate cancer: time to take notice of the clock.
Wei-Zhen ZHU ; Qi-Ying HE ; De-Chao FENG ; Qiang WEI ; Lu YANG
Asian Journal of Andrology 2023;25(2):184-191
The circadian clock is an evolutionary molecular product that is associated with better adaptation to changes in the external environment. Disruption of the circadian rhythm plays a critical role in tumorigenesis of many kinds of cancers, including prostate cancer (PCa). Integrating circadian rhythm into PCa research not only brings a closer understanding of the mechanisms of PCa but also provides new and effective options for the precise treatment of patients with PCa. This review begins with patterns of the circadian clock, highlights the role of the disruption of circadian rhythms in PCa at the epidemiological and molecular levels, and discusses possible new approaches to PCa therapy that target the circadian clock.
Humans
;
Male
;
Carcinogenesis
;
Circadian Clocks/physiology*
;
Circadian Rhythm/physiology*
;
Prostatic Neoplasms/physiopathology*
6.Research progress in control strategies of biological clock disorder.
Jing PENG ; Bao-Yin REN ; He ZHANG ; Li-Hong CHEN ; Guang-Rui YANG
Acta Physiologica Sinica 2023;75(2):279-290
Circadian clock is an internal mechanism evolved to adapt to cyclic environmental changes, especially diurnal changes. Keeping the internal clock in synchronization with the external clock is essential for health. Mismatch of the clocks due to phase shift or disruption of molecular clocks may lead to circadian disorders, including abnormal sleep-wake cycles, as well as disrupted rhythms in hormone secretion, blood pressure, heart rate, body temperature, etc. Long-term circadian disorders are risk factors for various common critical diseases such as metabolic diseases, cardiovascular diseases, and tumor. To prevent or treat the circadian disorders, scientists have conducted extensive research on the function of circadian clocks and their roles in the development of diseases, and screened hundreds of thousands of compounds to find candidates to regulate circadian rhythms. In addition, melatonin, light therapy, exercise therapy, timing and composition of food also play a certain role in relieving associated symptoms. Here, we summarized the progress of both drug- and non-drug-based approaches to prevent and treat circadian clock disorders.
Circadian Rhythm
;
Circadian Clocks
;
Melatonin/physiology*
7.THE EFFECT OF NIGHT-SHIFT WORK ON THE LEVEL OF URINARY 6-SULPHATOXYMELATONIN IN MEN OVER FIVE DAYS
Yin Cheng Lim ; Victor Chee Wai Hoe ; Nirmala Bhoo Pathy
Journal of University of Malaya Medical Centre 2023;26(2):197-203
Night-shift work may adversely affect health. This study aimed to assess the effect of night-shift work on the level of urinary 6-sulphatoxymelatonin. Repeated measures of urinary 6-sulphatoxymelatonin on the morning before night-shift work and after first, third and fifth night-shift work was undertaken in 29 males, Malay, day-night-shift workers. A total of 29 male workers participated in this study. Median age was 29 years old. The highest level of urinary 6-sulphatoxymelatonin was at time point 1, followed by a significant reduction from time point 1 to time point 2. Subsequently, there was a progressive increase of urinary 6-sulphatoxymelatonin from time point 2 to 4. However, the urinary 6-sulphatoxymelatonin did not normalise at time point 4 and remained lower than the baseline
Circadian Rhythm
8.Research progress on the regulation of mammalian energy metabolism by the circadian clock system and gut microbiota.
Hai-Sen ZHANG ; Chao LI ; Ya-Ting LI ; Ya-Ping JIN ; Wei LIU ; Hua-Tao CHEN
Acta Physiologica Sinica 2022;74(3):443-460
The mammalian internal circadian clock system has been evolved to adapt to the diurnal changes in the internal and external environment of the organism to regulate diverse physiological functions, such as the sleep-wake cycle and feeding rhythm, thereby coordinating the rhythmic changes of energy demand and nutrition supply in each diurnal cycle. The circadian clock regulates glucose metabolism, lipid metabolism, and hormones secretion in diverse tissues and organs, including the liver, skeletal muscle, pancreas, heart, and vessels. As a special "organ" of the host, the gut microbiota, together with the intestinal microenvironment (tissues, cells, and metabolites) in a co-evolutionary process, constitutes a micro-ecosystem and plays an important role in the process of nutrient digestion and absorption in the intestine of the host. In recent years, accumulating evidence indicates that the compositions, quantities, colonization, and functional activities of the gut microbiota exhibit significant circadian variations, which are closely related to the changes of various physiological functions under the regulation of host circadian clock system. In addition, several studies have shown that the gut microbiota can produce many important metabolites such as the short-chain fatty acids through the degradation of indigestive dietary fibers. A portion of gut microbiota-derived metabolites can regulate the circadian clock system and metabolism of the host. This article mainly discusses the interaction between the host circadian clock system and the gut microbiota, and highlights its influence on energy metabolism of the host, providing a novel clues and thought for the prevention and treatment of metabolic diseases.
Animals
;
Circadian Clocks/physiology*
;
Circadian Rhythm/physiology*
;
Ecosystem
;
Energy Metabolism
;
Gastrointestinal Microbiome/physiology*
;
Lipid Metabolism/physiology*
;
Mammals
9.Research progress of the regulation of cochlear sensitivity to noise by circadian rhythm.
Bao-Ling JIN ; Jing WU ; Zhong-Dan CUI ; Jia TANG ; Qi-Cai CHEN ; Zi-Ying FU
Acta Physiologica Sinica 2022;74(3):489-494
High level noise can damage cochlear hair cells, auditory nerve and synaptic connections between cochlear hair cells and auditory nerve, resulting in noise-induced hearing loss (NIHL). Recent studies have shown that animal cochleae have circadian rhythm, which makes them different in sensitivity to noise throughout the day. Cochlear circadian rhythm has a certain relationship with brain-derived neurotrophic factor and glucocorticoids, which affects the degree of hearing loss after exposure to noise. In this review, we summarize the research progress of the regulation of cochlear sensitivity to noise by circadian rhythm and prospect the future research direction.
Animals
;
Auditory Threshold
;
Circadian Rhythm
;
Cochlea
;
Evoked Potentials, Auditory, Brain Stem/physiology*
;
Hair Cells, Auditory
;
Hearing Loss, Noise-Induced
;
Noise/adverse effects*
10.Co-regulation of circadian clock genes and microRNAs in bone metabolism.
Tingting LI ; Shihua ZHANG ; Yuxuan YANG ; Lingli ZHANG ; Yu YUAN ; Jun ZOU
Journal of Zhejiang University. Science. B 2022;23(7):529-546
Mammalian bone is constantly metabolized from the embryonic stage, and the maintenance of bone health depends on the dynamic balance between bone resorption and bone formation, mediated by osteoclasts and osteoblasts. It is widely recognized that circadian clock genes can regulate bone metabolism. In recent years, the regulation of bone metabolism by non-coding RNAs has become a hotspot of research. MicroRNAs can participate in bone catabolism and anabolism by targeting key factors related to bone metabolism, including circadian clock genes. However, research in this field has been conducted only in recent years and the mechanisms involved are not yet well established. Recent studies have focused on how to target circadian clock genes to treat some diseases, such as autoimmune diseases, but few have focused on the co-regulation of circadian clock genes and microRNAs in bone metabolic diseases. Therefore, in this paper we review the progress of research on the co-regulation of bone metabolism by circadian clock genes and microRNAs, aiming to provide new ideas for the prevention and treatment of bone metabolic diseases such as osteoporosis.
Animals
;
Circadian Clocks/genetics*
;
Circadian Rhythm/genetics*
;
Mammals/genetics*
;
MicroRNAs/genetics*
;
Osteogenesis/genetics*
;
Osteoporosis/genetics*


Result Analysis
Print
Save
E-mail