1.Delayed Treatment of Capsaicin Produces Partial Motor Recovery by Enhancing Dopamine Function in MPP⁺-lesioned Rats via Ciliary Neurotrophic Factor
Kyoung In KIM ; Jeong Yeob BAEK ; Jae Yeong JEONG ; Jin Han NAM ; Eun Su PARK ; Eugene BOK ; Won Ho SHIN ; Young Cheul CHUNG ; Byung Kwan JIN
Experimental Neurobiology 2019;28(2):289-299
Transient receptor potential vanilloid subtype 1 (TRPV1) on astrocytes prevents ongoing degeneration of nigrostriatal dopamine (DA) neurons in MPP⁺-lesioned rats via ciliary neurotrophic factor (CNTF). The present study determined whether such a beneficial effect of astrocytic TRPV1 could be achieved after completion of injury of DA neurons, rather than ongoing injury, which seems more relevant to therapeutics. To test this, the MPP⁺-lesioned rat model utilized here exhibited approximately 70~80% degeneration of nigrostriatal DA neurons that was completed at 2 weeks post medial forebrain bundle injection of MPP⁺. TRPV1 agonist, capsaicin (CAP), was intraperitoneally administered. CNTF receptor alpha neutralizing antibody (CNTFRαNAb) was nigral injected to evaluate the role of CNTF endogenously produced by astrocyte through TRPV1 activation on DA neurons. Delayed treatment of CAP produced a significant reduction in amphetamine-induced rotational asymmetry. Accompanying this behavioral recovery, CAP treatment increased CNTF levels and tyrosine hydroxylase (TH) activity in the substantia nigra pars compacta (SNpc), and levels of DA and its metabolites in the striatum compared to controls. Interestingly, behavioral recovery and increases in biochemical indices were not reflected in trophic changes of the DA system. Instead, behavioral recovery was temporal and dependent on the continuous presence of CAP treatment. The results suggest that delayed treatment of CAP increases nigral TH enzyme activity and striatal levels of DA and its metabolites by CNTF endogenously derived from CAP-activated astrocytes through TRPV1, leading to functional recovery. Consequently, these findings may be useful in the treatment of DA imbalances associated with Parkinson's disease.
Animals
;
Antibodies, Neutralizing
;
Astrocytes
;
Capsaicin
;
Ciliary Neurotrophic Factor
;
Dopamine
;
Dopaminergic Neurons
;
Medial Forebrain Bundle
;
Models, Animal
;
Neurons
;
Parkinson Disease
;
Pars Compacta
;
Rats
;
Receptor, Ciliary Neurotrophic Factor
;
Tyrosine 3-Monooxygenase
2.microRNA-146a Promotes Growth of Acute Leukemia Cells by Downregulating Ciliary Neurotrophic Factor Receptor and Activating JAK2/STAT3 Signaling
Lei WANG ; Hongyan ZHANG ; Donghong LEI
Yonsei Medical Journal 2019;60(10):924-934
PURPOSE: Acute leukemia (AL) is classified as acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML). This study aimed to investigate the effect of miR-146a on childhood AL and its underlying molecular mechanisms. MATERIALS AND METHODS: Bone marrow samples were obtained from 39 AL children and 10 non-cancer controls. The expressions of miR-146a and ciliary neurotrophic factor receptor (CNTFR) were detected by quantitative real-time polymerase chain reaction (qRT-PCR) in ALL and AML pediatric patients, as well as ALL (Jurkat) and AML (HL-60) cells. Correlations between miR-146a and clinical indicators were explored. A targeting relationship between miR-146a and CNTFR was detected by dual luciferase reporter gene assay. Cell proliferation, apoptosis, migration, and invasion of Jurkat and HL-60 cells were measured by MTT assay, flow cytometry, and transwell assay, respectively. LIF expression was detected by qRT-PCR in Jurkat and HL-60 cells. The expression of p-JAK2, JAK2, p-STAT3, and STAT3 in HL-60 cells was measured by Western blot. RESULTS: miR-146a was increased in ALL and AML pediatric patients, while CNTFR was decreased. miR-146a expression was associated with immunophenotype, karyotype, fusion gene, and SIL-TAL1. CNTFR was a target gene of miR-146a. miR-146a could promote cell proliferation, migration, and invasion, as well as inhibit cell apoptosis in Jurkat and HL-60 cells by downregulating CNTFR. Meanwhile, miR-146a inhibited the expression of LIF and activated JAK2/STAT3 pathway by downregulating CNTFR. CONCLUSION: miR-146a could promote the proliferation, migration, and invasion and inhibit the apoptosis of AL Jurkat and HL-60 cells by downregulating CNTFR and activating the JAK2/STAT3 pathway.
Apoptosis
;
Blotting, Western
;
Bone Marrow
;
Cell Proliferation
;
Child
;
Ciliary Neurotrophic Factor
;
Flow Cytometry
;
Genes, Reporter
;
HL-60 Cells
;
Humans
;
Karyotype
;
Leukemia
;
Leukemia, Myeloid, Acute
;
Luciferases
;
Precursor Cell Lymphoblastic Leukemia-Lymphoma
;
Real-Time Polymerase Chain Reaction
;
Receptor, Ciliary Neurotrophic Factor
3.PINK1 Deficiency Decreases Expression Levels of mir-326, mir-330, and mir-3099 during Brain Development and Neural Stem Cell Differentiation.
Insup CHOI ; Joo Hong WOO ; Ilo JOU ; Eun hye JOE
Experimental Neurobiology 2016;25(1):14-23
PTEN-induced putative kinase 1 (PINK1) is a Parkinson's disease (PD) gene. We examined miRNAs regulated by PINK1 during brain development and neural stem cell (NSC) differentiation, and found that lvels of miRNAs related to tumors and inflammation were different between 1-day-old-wild type (WT) and PINK1-knockout (KO) mouse brains. Notably, levels of miR-326, miR-330 and miR-3099, which are related to astroglioma, increased during brain development and NSC differentiation, and were significantly reduced in the absence of PINK1. Interestingly, in the presence of ciliary neurotrophic factor (CNTF), which pushes differentiation of NSCs into astrocytes, miR-326, miR-330, and miR-3099 levels in KO NSCs were also lower than those in WT NSCs. Furthermore, mimics of all three miRNAs increased expression of the astrocytic marker glial fibrillary acidic protein (GFAP) during differentiation of KO NSCs, but inhibitors of these miRNAs decreased GFAP expression in WT NSCs. Moreover, these miRNAs increased the translational efficacy of GFAP through the 3'-UTR of GFAP mRNA. Taken together, these results suggest that PINK1 deficiency reduce expression levels of miR-326, miR-330 and miR-3099, which may regulate GFAP expression during NSC differentiation and brain development.
Animals
;
Astrocytes
;
Astrocytoma
;
Brain*
;
Ciliary Neurotrophic Factor
;
Glial Fibrillary Acidic Protein
;
Inflammation
;
Mice
;
MicroRNAs
;
Neural Stem Cells*
;
Parkinson Disease
;
Phosphotransferases
;
RNA, Messenger
4.Preventive Effect of Different Compatibilities of Ramulus Cinnamomi and Radix Paeomlae alba in Guizhi Decoction on Cardiac Sympathetic Denervation Induced by 6-OHDA.
Ping JIANG ; Du-fang MA ; Yue-hua JIANG ; Jin-long YANG ; Xiang-dong XU ; Xue WANG ; Hai-qing LIN ; Xiao LI
Chinese Journal of Integrated Traditional and Western Medicine 2016;36(5):608-613
OBJECTIVETo observe the preventive effect of different compatibilities of Ramulus Cinnamomi (RC) and Radix Paeomiae alba (RPA) in Guizhi Decoction (GZD) on neurotransmitters and their rate-limiting enzymes, and neurotrophic factors of cardiac sympathetic denervation model rats induced by 6-hydroxydopamine (6-OHDA).
METHODSTotally 54 male Wistar rats were randomly divided into 6 groups, i.e., the blank control group, the model group, the methycobal group, the 2:1 (RC/RPA) Guishao group, the 1:2 Guishao group, and the 1:1 Guishao group, 9 in each group. Sympathetic denervation was induced by intraperitoneal injection of 6-OHDA for three successive days. Rats in the methycobal group and GZD groups were administered with corresponding decoction by gastrogavage 1 week before modeling (methycobal at the daily dose 0.15 mg/kg; GZD at the daily dose of 4.0, 5.5, 5.5 g crude drugs/kg for GZD 1:1, 1:2, and 2:1 groups). All medication lasted for 10 successive days. Levels of norepinephrine (NE), tyrosine hydroxylase (TH), choline acetyl-transferase (ChAT), nerve growth factor (NGF), growth associated protein43 (GAP-43) and ciliary neurotrophic factor (CNTF) in myocar- dial homogenates of right atrium and ventricular septum were detected by ELISA.
RESULTSCompared with the blank control group, levels of NE, TH, TH/ChAT ratio, and GAP-43 in myocardial homogenates of right atrium and ventricular septum decreased in the model group, and level of NGF increased (P < 0.01, P < 0.05). Compared with the model group, levels of NE and GAP-43 increased in the right atrium and interventricular septum; NGF level of the ventricular septum decreased in the methycobal group and each GZD groups. TH and TH/ChAT ratio in the right atrium increased in the 2:1 Guishao group and the 1:2 Guishao group (P < 0.01, P < 0.05); NGF levels in the right atrium and interventricular septum decreased only in the 1:1 Guishao group (P < 0.01, P< 0.05). Compared with the methycobal group, levels of NE, TH, and GAP-43 in the right atrium and interventricular septum increased, and NGF levels in the right atrium and interventricular septum decreased in the 1:1 Guishao group (P < 0.05). Compared with the methycobal group, levels of NE and GAP-43 in interventricular septum increased in the 2:1 Guishao group (P < 0.05).
CONCLUSIONGZD (with the proportion between RC and RPA 2:1 and 1:1) could improve contents of neurotransmitters and their rate-limiting enzymes, as well as neurotrophic factors in cardiac sympathetic denervation model rats induced by 6-OHDA, alleviate cardiac sympathetic denervation induced by 6-OHDA, and maintain the balance of sympathetic-vagal nerve system.
Animals ; Choline O-Acetyltransferase ; metabolism ; Ciliary Neurotrophic Factor ; metabolism ; Drugs, Chinese Herbal ; pharmacology ; GAP-43 Protein ; metabolism ; Heart ; drug effects ; innervation ; Male ; Myocardium ; metabolism ; Nerve Growth Factor ; metabolism ; Norepinephrine ; metabolism ; Oxidopamine ; adverse effects ; Random Allocation ; Rats ; Rats, Wistar ; Sympathectomy ; Tyrosine 3-Monooxygenase ; metabolism
5.Effect of Draconis Sanguis-containing serum on NGF, BDNF, CNTF, LNGFR, TrkA, GDNF, GAP-43 and NF-H expressions in Schwann cells.
Jin GU ; Xin-rong HE ; Ya-liang HAN
China Journal of Chinese Materia Medica 2015;40(7):1392-1395
OBJECTIVETo observe the effect of Draconis Sanguis-containing serum on the expressions of NGF, BDNF, CNTF, LNG-FR, TrkA, GDNF, GAP-43 and NF-H in Schwann cells, and investigate the possible mechanism of Draconis Sanguis to promote peripheral nerve regeneration.
METHODSD rats were randomly divided into 2 groups: the Draconis Sanguis group (orally administered with Draconis Sanguis-containing balm solution) and the blank group (equivoluminal balm) to prepare Draconis Sanguis-containing serum and blank control serum. Schwann cells were extracted from double sciatic nerves of three-day-old SD rats, divided into 2 groups: the Draconis Sanguis group and the blank control group, and respectively cultured with 10% Draconis Sanguis-containing serum or blank control serum. The mRNA expressions of NGF, BDNF, CNTF and other genes in Schwann cells were measured by RT-PCR analysis 48 hours later.
RESULTMost of the Schwann cells were bipolar spindle and arranged shoulder to shoulder or end to end under the microscope and identified to be positive with the immunocytochemical method. To compare with the blank group, mRNA expressions of NGF, LNGFR, GDNF and GAP-43 significantly increased (P < 0.01). Whereas that of BDNF decreased significantly (P < 0.05), and so did that of TrkA, CNTF (P < 0.01), with no remarkable difference in NF-H-mRNA.
CONCLUSIONTraditional Chinese medicine Draconis Sanguis may show effect in nerve regeneration by up-regulating mRNA expressions of NGF, LNGFR, GDNF and GAP-43 and down-regulating mRNA expressions of TrkA, BDNF and CNTF.
Animals ; Arecaceae ; chemistry ; Brain-Derived Neurotrophic Factor ; genetics ; metabolism ; Cells, Cultured ; Ciliary Neurotrophic Factor ; genetics ; metabolism ; Drugs, Chinese Herbal ; pharmacology ; GAP-43 Protein ; genetics ; metabolism ; Gene Expression ; drug effects ; Glial Cell Line-Derived Neurotrophic Factor ; genetics ; metabolism ; Male ; Nerve Growth Factor ; genetics ; metabolism ; Nerve Regeneration ; drug effects ; Neurofilament Proteins ; genetics ; metabolism ; Rats ; Rats, Sprague-Dawley ; Receptor, trkA ; genetics ; metabolism ; Schwann Cells ; drug effects ; physiology ; Serum ; chemistry
6.Neuroprotection in glaucoma: present and future.
Shi-da CHEN ; Lu WANG ; Xiu-lan ZHANG
Chinese Medical Journal 2013;126(8):1567-1577
OBJECTIVETo review the updated research on neuroprotection in glaucoma, and summarize the potential agents investigated so far.
DATA SOURCESThe data in this review were collected from PubMed and Google Scholar databases published in English up to September 2012, with keywords including glaucoma, neuroprotection, and retinal ganglion cells, both alone and in combination. Publications from the past ten years were selected, but important older articles were not excluded.
STUDY SELECTIONArticles about neuroprotection in glaucoma were selected and reviewed, and those that are cited in articles identified by this search strategy and judged relevant to this review were also included.
RESULTSAlthough lowering the intraocular pressure is the only therapy approved as being effective in the treatment of glaucoma, increasing numbers of studies have discovered various mechanisms of retinal ganglion cells death in the glaucoma and relevant neuroprotective strategies. These strategies target neurotrophic factor deprivation, excitotoxic damage, oxidative stress, mitochondrial dysfunction, inflammation, activation of intrinsic and extrinsic apoptotic signals, ischemia, and protein misfolding. Exploring the mechanism of axonal transport failure, synaptic dysfunction, the glial system in glaucoma, and stem cell used in glaucoma constitute promising research areas of the future.
CONCLUSIONSNeuroprotective strategies continue to be refined, and future deep investment in researching the pathogenesis of glaucoma may provide novel and practical neuroprotection tactics. Establishing a system to assess the effects of neuroprotection treatments may further facilitate this research.
Apoptosis ; Axonal Transport ; Brain-Derived Neurotrophic Factor ; physiology ; Ciliary Neurotrophic Factor ; physiology ; Glaucoma ; etiology ; therapy ; Humans ; Mitochondria ; physiology ; Neuroprotective Agents ; therapeutic use ; Oxidative Stress ; Protein Folding ; Receptors, N-Methyl-D-Aspartate ; physiology ; Retinal Ganglion Cells ; physiology
7.Effects of Jinmaitong Capsule () on ciliary neurotrophic factor in sciatic nerves of diabetes mellitus rats.
Yue SHI ; Xiao-Chun LIANG ; Qun-Li WU ; Lian-Qing SUN ; Ling QU ; Li ZHAO ; Pu-Yan WANG
Chinese journal of integrative medicine 2013;19(2):104-111
OBJECTIVETo study the effects of the Chinese medicine Jinmaitong Capsule (, JMT) on the pathomorphology of sciatic nerves, ciliary neurotrophic factor (CNTF), and the mRNA expressions of CNTF in rats with streptozotocin-induced diabetes mellitus (STZ-DM).
METHODSThe animal model was established by one time intraperitoneal injection of streptozotocin. The rats were simply divided by random into 5 groups including model group, low-dose JMT group (JL), medium-dose JMT group (JM), high-dose JMT group (JH) and neurotropin group. For each of the above 5 groups, a group of 10 normal Wistar rats matched in body weight, age and gender were set as normal group. Intragastric administrations were started after the animal model established. The JL group were administered with five times the JMT dose recommended for a human adult; the JM group were administered with ten times the JMT dose recommended for a human adult; the JH group were administered with twenty times the JMT dose recommended for a human adult. The neurotropin group was administered with ten times the neurotropin dose recommended for a human adult. All rats were given intragastric administration for 16 weeks and then killed. In the 4th, 8th, 12th, 16th week, body weight and blood glucose level were detected before and after the intervention. The morphologic changes of the sciatic nerves were observed by optical microscope and transmission electron microscope. The CNTFmRNA expressions were detected by real-time fluorescent quantitative polymerase chain protein, and the CNTF protein expressions were detected by immunohistochemical method.
RESULTSThe blood glucose levels of the STZ-DM rats were much higher than normal group (P<0.01), and there was no apparent difference between any treatment groups and the model group (P>0.05). Before and after the intervention in the 4th, 8th, 12th, 16th week, there were no significant differences in the body weight among all the groups (P>0.05). The sciatic nerves of STZ-DM rats might have pathomorphological changes in axons, myelin sheaths, and interstitium. The levels of CNTF and CNTF-mRNA expressions in the STZ-DM rats were both significantly decreased (P<0.01). The sciatic nerves of STZ-DM rats might have pathomorphological changes in axons, myelin sheaths, and interstitium.
CONCLUSIONJMT could improve the pathomorphology of sciatic nerves by increasing CNTF's and CNTF-mRNA expressions in sciatic nerve tissues, and promote the repair and regeneration of damaged nerve fibers.
Animals ; Blood Glucose ; drug effects ; Body Weight ; drug effects ; Ciliary Neurotrophic Factor ; genetics ; metabolism ; Diabetes Mellitus, Experimental ; drug therapy ; pathology ; Drugs, Chinese Herbal ; pharmacology ; therapeutic use ; Gene Expression Regulation ; drug effects ; Humans ; Male ; RNA, Messenger ; genetics ; metabolism ; Rats ; Rats, Wistar ; Sciatic Nerve ; drug effects ; pathology ; ultrastructure
8.Fibroblast growth factor-2 counteracts the effect of ciliary neurotrophic factor on spontaneous differentiation in adult hippocampal progenitor cells.
Zhili HE ; Jun DING ; Jianfang ZHANG ; Ying LIU ; Chengxin GONG ; Shenggang SUN ; Honghui CHEN
Journal of Huazhong University of Science and Technology (Medical Sciences) 2012;32(6):867-871
Neural stem/progenitor cells (NSCs) can spontaneously differentiate into neurons and glial cells in the absence of mitogen fibroblast growth factor-2 (FGF-2) or epidermal growth factor (EGF) in medium and the spontaneous differentiation of NSCs is mediated partially by endogenous ciliary neurotrophic factor (CNTF). This study examined the relationship of FGF-2 and CNTF in the spontaneous differentiation of adult hippocampal progenitor cells (AHPs). AHPs were cultured in the medium containing different concentration of FGF-2 (1-100 ng/mL). Western blotting and immunofluorescence staining were applied to detect the expression of the astrocytic marker GFAP, the neuronal marker Tuj1, the oligodendrocytic marker CNPase and, Nestin, the marker of AHPs. The expression of endogenous CNTF in AHPs at early (passage 4) and late stage (passage 22) was also measured by Western blotting. The results showed that FGF-2 increased the expression of Nestin, dramatically inhibited the expression of GFAP and Tuj1 and slightly suppressed the expression of CNPase. FGF-2 down-regulated the expression of endogenous CNTF in AHPs at both early (passage 4) and late stage (passage 22). These results suggested that FGF-2 could inhibit the spontaneous differentiation of cultured AHPs by negatively regulating the expression of endogenous CNTF in AHPs.
Animals
;
Cell Differentiation
;
physiology
;
Ciliary Neurotrophic Factor
;
metabolism
;
Fibroblast Growth Factor 2
;
metabolism
;
Hippocampus
;
metabolism
;
physiology
;
Male
;
Rats
;
Rats, Wistar
;
Stem Cells
;
metabolism
;
physiology
9.Effects of bone marrow mesenchymal stem cell transplantation on retinal cell apoptosis in premature rats with retinopathy.
Yan-Song ZHAO ; Kan-Xing ZHAO ; Xiao-Li WANG ; Yu-Xi CHEN ; Li WANG ; Qing-Jie MU
Chinese Journal of Contemporary Pediatrics 2012;14(12):971-975
OBJECTIVETo explore the effects of marrow mesenchymal stem cell (BMSC) transplantation on retinal cells apoptosis and changes to neurotrophin-3 (NT-3 and ciliary neurotrophic factor (CNTF) in rats with retinopathy of prematurity (ROP).
METHODSSeven-day-old Sprague-Dawley rats were randomly divided into normal control (CON), ROP, BMSC transplantation (BMSCs were transplanted 5 days after oxygen conditioning) and phosphate buffered saline (PBS) groups. The ROP model was prepared according to the classic hyperoxygen method. Seven days after transplantation, TUNEL/DAPI, NT-3/API and CNTF/DAPI double-labeled immunofluorescence were used to examine the effects of BMSC transplantation on both the apoptosis of retinal cells and the expression of NT-3 and CNTF protein in the retinal cells of the ROP rats.
RESULTSSeven days after BMSC transplantation, there were few TUNEL+ DAPI+ cells observed in the CON group. There were fewer TUNEL+DAPI+ cells observed in the BMSC group than in the ROP group (P<0.01), but there was no significant difference between the ROP and PBS groups (P>0.05). There were few NT-3+DAPI+ cells and CNTF+DAPI+ cells in the CON group. There were more NT-3+DAPI+ and CNTF+DAPI+ cells in the ROP group than in the CON group, but there was no significant difference between the ROP and CON groups (P>0.05). More NT-3+DAPI+ and CNTF+DAPI+ cells were observed in the BMSC group compared with the ROP group (P<0.01), and there was no significant difference in either NT-3+DAPI+ or CNTF+DAPI+ cells between the ROP and PBS groups (P>0.05).
CONCLUSIONSBMSC transplantation therapy could alleviate the apoptosis of retinal cells in ROP rats, and its mechanisms might be associated with promoting the expression of NT-3 and CNTF protein in retinal cells.
Animals ; Apoptosis ; Bone Marrow Cells ; physiology ; Cell Proliferation ; Ciliary Neurotrophic Factor ; analysis ; Female ; Humans ; In Situ Nick-End Labeling ; Infant, Newborn ; Male ; Mesenchymal Stem Cell Transplantation ; Neurotrophin 3 ; analysis ; Rats ; Rats, Sprague-Dawley ; Retina ; pathology ; Retinopathy of Prematurity ; metabolism ; therapy
10.Expression of ciliary neurotrophic factor and its receptor in experimental obstructive nephropathy.
Byoung Seung LEE ; Jae Youn CHOI ; Jung Ho CHA
Anatomy & Cell Biology 2011;44(2):85-97
Ciliary neurotrophic factor (CNTF) is well known as a growth/survival factor of neuronal tissue. We investigated the expression of CNTF and its specific receptor alpha (CNTFRalpha) in a unilateral ureteral obstruction (UUO) model. Complete UUO was produced by left ureteral ligation in Sprague-Dawley rats. The animals were sacrificed on days 1, 3, 5, 7, 14, 21, and 28 after UUO. The kidneys were fixed, and processed for both immunohistochemistry and in situ hybridization. CNTF immunoreactivity in sham-operated kidneys was observed only in the descending thin limb (DTL) of the loop of Henle. In UUO kidneys, CNTF expression was induced in the S3 segment (S3s) of the proximal tubule from day 1, and progressively expanded into the entire S3s and a part of the convoluted proximal tubules, distal tubules (DT), and glomerular parietal epithelium up to day 7. Upregulated CNTF expression was maintained to day 28. From day 14, the inner medullary collecting duct showed weak CNTF immunoreactivity. The CNTFRalpha mRNA hybridization signal in sham-operated kidneys was weakly detected in the DTL, DT, medullary thick ascending limb, and in a few S3s cells. After UUO, CNTFRalpha mRNA expression increased progressively in both the renal cortex and the medulla up to day 7 and increased expression was maintained until day 28. The results suggest that the S3s may be the principal induction site for CNTF in response to renal injury, and that CNTF may play a role in chronic renal injury.
Animals
;
Chimera
;
Ciliary Neurotrophic Factor
;
Ciliary Neurotrophic Factor Receptor alpha Subunit
;
Epithelium
;
Extremities
;
Immunohistochemistry
;
In Situ Hybridization
;
Kidney
;
Ligation
;
Loop of Henle
;
Neurons
;
Rats, Sprague-Dawley
;
RNA, Messenger
;
Ureter
;
Ureteral Obstruction

Result Analysis
Print
Save
E-mail