1.The Role of Gut Microbiota in Male Erectile Dysfunction of Rats
Zhunan XU ; Shangren WANG ; Chunxiang LIU ; Jiaqi KANG ; Yang PAN ; Zhexin ZHANG ; Hang ZHOU ; Mingming XU ; Xia LI ; Haoyu WANG ; Shuai NIU ; Li LIU ; Daqing SUN ; Xiaoqiang LIU
The World Journal of Men's Health 2025;43(1):213-227
Purpose:
Erectile dysfunction (ED) is a common male sexual dysfunction. Gut microbiota plays an important role in various diseases. To investigate the effects and mechanisms of intestinal flora dysregulation induced by high-fat diet (HFD) on erectile function.
Materials and Methods:
Male Sprague–Dawley rats aged 8 weeks were randomly divided into the normal diet (ND) and HFD groups. After 24 weeks, a measurement of erectile function was performed. We performed 16S rRNA sequencing of stool samples. Then, we established fecal microbiota transplantation (FMT) rat models by transplanting fecal microbiota from rats of ND group and HFD group to two new groups of rats respectively. After 24 weeks, erectile function of the rats was evaluated and 16S rRNA sequencing was performed, and serum samples were collected for the untargeted metabolomics detection.
Results:
The erectile function of rats and the species diversity of intestinal microbiota in the HFD group was significantly lower, and the characteristics of the intestinal microbiota community structure were also significantly different between the two groups. The erectile function of rats in the HFD-FMT group was significantly lower than that of rats in the ND-FMT group. The characteristics of the intestinal microbiota community structure were significantly different. In the HFD-FMT group, 27 metabolites were significantly different and they were mainly involved in the several inflammation-related pathways.
Conclusions
Intestinal microbiota disorders induced by HFD can damage the intestinal barrier of rats, change the serum metabolic profile, induce low-grade inflammation and apoptosis in the corpus cavernosum of the penis, and lead to ED.
2.The Role of Gut Microbiota in Male Erectile Dysfunction of Rats
Zhunan XU ; Shangren WANG ; Chunxiang LIU ; Jiaqi KANG ; Yang PAN ; Zhexin ZHANG ; Hang ZHOU ; Mingming XU ; Xia LI ; Haoyu WANG ; Shuai NIU ; Li LIU ; Daqing SUN ; Xiaoqiang LIU
The World Journal of Men's Health 2025;43(1):213-227
Purpose:
Erectile dysfunction (ED) is a common male sexual dysfunction. Gut microbiota plays an important role in various diseases. To investigate the effects and mechanisms of intestinal flora dysregulation induced by high-fat diet (HFD) on erectile function.
Materials and Methods:
Male Sprague–Dawley rats aged 8 weeks were randomly divided into the normal diet (ND) and HFD groups. After 24 weeks, a measurement of erectile function was performed. We performed 16S rRNA sequencing of stool samples. Then, we established fecal microbiota transplantation (FMT) rat models by transplanting fecal microbiota from rats of ND group and HFD group to two new groups of rats respectively. After 24 weeks, erectile function of the rats was evaluated and 16S rRNA sequencing was performed, and serum samples were collected for the untargeted metabolomics detection.
Results:
The erectile function of rats and the species diversity of intestinal microbiota in the HFD group was significantly lower, and the characteristics of the intestinal microbiota community structure were also significantly different between the two groups. The erectile function of rats in the HFD-FMT group was significantly lower than that of rats in the ND-FMT group. The characteristics of the intestinal microbiota community structure were significantly different. In the HFD-FMT group, 27 metabolites were significantly different and they were mainly involved in the several inflammation-related pathways.
Conclusions
Intestinal microbiota disorders induced by HFD can damage the intestinal barrier of rats, change the serum metabolic profile, induce low-grade inflammation and apoptosis in the corpus cavernosum of the penis, and lead to ED.
3.The Role of Gut Microbiota in Male Erectile Dysfunction of Rats
Zhunan XU ; Shangren WANG ; Chunxiang LIU ; Jiaqi KANG ; Yang PAN ; Zhexin ZHANG ; Hang ZHOU ; Mingming XU ; Xia LI ; Haoyu WANG ; Shuai NIU ; Li LIU ; Daqing SUN ; Xiaoqiang LIU
The World Journal of Men's Health 2025;43(1):213-227
Purpose:
Erectile dysfunction (ED) is a common male sexual dysfunction. Gut microbiota plays an important role in various diseases. To investigate the effects and mechanisms of intestinal flora dysregulation induced by high-fat diet (HFD) on erectile function.
Materials and Methods:
Male Sprague–Dawley rats aged 8 weeks were randomly divided into the normal diet (ND) and HFD groups. After 24 weeks, a measurement of erectile function was performed. We performed 16S rRNA sequencing of stool samples. Then, we established fecal microbiota transplantation (FMT) rat models by transplanting fecal microbiota from rats of ND group and HFD group to two new groups of rats respectively. After 24 weeks, erectile function of the rats was evaluated and 16S rRNA sequencing was performed, and serum samples were collected for the untargeted metabolomics detection.
Results:
The erectile function of rats and the species diversity of intestinal microbiota in the HFD group was significantly lower, and the characteristics of the intestinal microbiota community structure were also significantly different between the two groups. The erectile function of rats in the HFD-FMT group was significantly lower than that of rats in the ND-FMT group. The characteristics of the intestinal microbiota community structure were significantly different. In the HFD-FMT group, 27 metabolites were significantly different and they were mainly involved in the several inflammation-related pathways.
Conclusions
Intestinal microbiota disorders induced by HFD can damage the intestinal barrier of rats, change the serum metabolic profile, induce low-grade inflammation and apoptosis in the corpus cavernosum of the penis, and lead to ED.
4.The Role of Gut Microbiota in Male Erectile Dysfunction of Rats
Zhunan XU ; Shangren WANG ; Chunxiang LIU ; Jiaqi KANG ; Yang PAN ; Zhexin ZHANG ; Hang ZHOU ; Mingming XU ; Xia LI ; Haoyu WANG ; Shuai NIU ; Li LIU ; Daqing SUN ; Xiaoqiang LIU
The World Journal of Men's Health 2025;43(1):213-227
Purpose:
Erectile dysfunction (ED) is a common male sexual dysfunction. Gut microbiota plays an important role in various diseases. To investigate the effects and mechanisms of intestinal flora dysregulation induced by high-fat diet (HFD) on erectile function.
Materials and Methods:
Male Sprague–Dawley rats aged 8 weeks were randomly divided into the normal diet (ND) and HFD groups. After 24 weeks, a measurement of erectile function was performed. We performed 16S rRNA sequencing of stool samples. Then, we established fecal microbiota transplantation (FMT) rat models by transplanting fecal microbiota from rats of ND group and HFD group to two new groups of rats respectively. After 24 weeks, erectile function of the rats was evaluated and 16S rRNA sequencing was performed, and serum samples were collected for the untargeted metabolomics detection.
Results:
The erectile function of rats and the species diversity of intestinal microbiota in the HFD group was significantly lower, and the characteristics of the intestinal microbiota community structure were also significantly different between the two groups. The erectile function of rats in the HFD-FMT group was significantly lower than that of rats in the ND-FMT group. The characteristics of the intestinal microbiota community structure were significantly different. In the HFD-FMT group, 27 metabolites were significantly different and they were mainly involved in the several inflammation-related pathways.
Conclusions
Intestinal microbiota disorders induced by HFD can damage the intestinal barrier of rats, change the serum metabolic profile, induce low-grade inflammation and apoptosis in the corpus cavernosum of the penis, and lead to ED.
5.The Role of Gut Microbiota in Male Erectile Dysfunction of Rats
Zhunan XU ; Shangren WANG ; Chunxiang LIU ; Jiaqi KANG ; Yang PAN ; Zhexin ZHANG ; Hang ZHOU ; Mingming XU ; Xia LI ; Haoyu WANG ; Shuai NIU ; Li LIU ; Daqing SUN ; Xiaoqiang LIU
The World Journal of Men's Health 2025;43(1):213-227
Purpose:
Erectile dysfunction (ED) is a common male sexual dysfunction. Gut microbiota plays an important role in various diseases. To investigate the effects and mechanisms of intestinal flora dysregulation induced by high-fat diet (HFD) on erectile function.
Materials and Methods:
Male Sprague–Dawley rats aged 8 weeks were randomly divided into the normal diet (ND) and HFD groups. After 24 weeks, a measurement of erectile function was performed. We performed 16S rRNA sequencing of stool samples. Then, we established fecal microbiota transplantation (FMT) rat models by transplanting fecal microbiota from rats of ND group and HFD group to two new groups of rats respectively. After 24 weeks, erectile function of the rats was evaluated and 16S rRNA sequencing was performed, and serum samples were collected for the untargeted metabolomics detection.
Results:
The erectile function of rats and the species diversity of intestinal microbiota in the HFD group was significantly lower, and the characteristics of the intestinal microbiota community structure were also significantly different between the two groups. The erectile function of rats in the HFD-FMT group was significantly lower than that of rats in the ND-FMT group. The characteristics of the intestinal microbiota community structure were significantly different. In the HFD-FMT group, 27 metabolites were significantly different and they were mainly involved in the several inflammation-related pathways.
Conclusions
Intestinal microbiota disorders induced by HFD can damage the intestinal barrier of rats, change the serum metabolic profile, induce low-grade inflammation and apoptosis in the corpus cavernosum of the penis, and lead to ED.
6.Dynamic Monitoring and Analysis of Ammonia Concentration in Laboratory Animal Facilities Under Suspension of Heating Ventilation and Air Conditioning System
Qingzhen JIAO ; Guihua WU ; Wen TANG ; Fan FAN ; Kai FENG ; Chunxiang YANG ; Jian QIAO ; Sufang DENG
Laboratory Animal and Comparative Medicine 2025;45(4):490-495
ObjectiveTo monitor the real-time changes in ammonia concentration in the laboratory animal facility environment before, during, and after the air conditioning system stops supplying air, so as to provide a basis and reference for developing emergency plans for the shutdown of the air conditioning system. MethodsThe laboratory animal facilities of the Wuhan Institute of Biological Products were used as the research object. Ammonia concentration detectors were used to monitor ammonia concentration continuously in the environment of conventional rabbit production facility, SPF hamster production facility, and SPF guinea pig experimental facility before and after the passive shutdown due to repairs and active maintenance shutdown of the air conditioning system, as well as the time for the ammonia concentration to return to daily levels after resuming air supply. ResultsUnder both shutdown modes of the air conditioning system, the trend of ammonia concentration changes in different laboratory animal facilities was consistent, showing a rapid increase after shutdown and a rapid decrease after resuming air supply. Under active maintenance shutdown, the maximum ammonia concentrations in the conventional rabbit production facilities, SPF hamster production facilities, and SPF guinea pig experimental facilities were 9.81 mg/m³, 14.27 mg/m³, and 6.98 mg/m³, respectively. Within 12 minutes after resuming air supply, ammonia concentration could return to normal daily levels. Under passive long-term shutdown, ammonia concentration value was positively correlated with the duration of air supply suspension. As the shutdown duration increased, ammonia concentration continued to increase. The maximum ammonia concentration values in the three facilities occurred at 88 minutes (38.06 mg/m³), 40 minutes (18.43 mg/m³), and 34 minutes (15.61 mg/m³) after air supply suspension, respectively.Within 11 minutes after resuming air supply, ammonia concentration could return to normal daily levels. ConclusionShutdown of the air conditioning system causes a rapid increase in ammonia concentration in laboratory animal facilities, and the rise in ammonia concentration is positively correlated with the duration of air supply suspension. Therefore, when an emergency shutdown of the air-conditioning system is required due to maintenance or other reasons, backup fans should be provided in accordance with the requirements of GB 50447-2008 "Architectural and Technical Code for Laboratory Animal Facilities". Older facilities should make adequate preparations and develop a scientifically sound emergency plan.
7.Recommendations for Standardized Reporting of Systematic Reviews and Meta-Analysis of Animal Experiments
Qingyong ZHENG ; Donghua YANG ; Zhichao MA ; Ziyu ZHOU ; Yang LU ; Jingyu WANG ; Lina XING ; Yingying KANG ; Li DU ; Chunxiang ZHAO ; Baoshan DI ; Jinhui TIAN
Laboratory Animal and Comparative Medicine 2025;45(4):496-507
Animal experiments are an essential component of life sciences and medical research. However, the external validity and reliability of individual animal studies are frequently challenged by inherent limitations such as small sample sizes, high design heterogeneity, and poor reproducibility, which impede the effective translation of research findings into clinical practice. Systematic reviews and meta-analysis represent a key methodology for integrating existing evidence and enhancing the robustness of conclusions. Currently, however, the application of systematic reviews and meta-analysis in the field of animal experiments lacks standardized guidelines for their conduct and reporting, resulting in inconsistent quality and, to some extent, diminishing their evidence value. To address this issue, this paper aims to systematically delineate the reporting process for systematic reviews and meta-analysis of animal experiments and to propose a set of standardized recommendations that are both scientific and practical. The article's scope encompasses the entire process, from the preliminary preparatory phase [including formulating the population, intervention, comparison and outcome (PICO) question, assessing feasibility, and protocol pre-registration] to the key writing points for each section of the main report. In the core methods section, the paper elaborates on how to implement literature searches, establish eligibility criteria, perform data extraction, and assess the risk of bias, based on the Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) statement, in conjunction with relevant guidelines and tools such as Animal Research: Reporting of in Vivo Experiments (ARRIVE) and a risk of bias assessment tool developed by the Systematic Review Centre for Laboratory Animal Experimentation (SYRCLE). For the presentation of results, strategies are proposed for clear and transparent display using flow diagrams and tables of characteristics. The discussion section places particular emphasis on how to scientifically interpret pooled effects, thoroughly analyze sources of heterogeneity, evaluate the impact of publication bias, and cautiously discuss the validity and limitations of extrapolating findings from animal studies to clinical settings. Furthermore, this paper recommends adopting the Grading of Recommendations Assessment, Development and Evaluation (GRADE) methodology to comprehensively grade the quality of evidence. Through a modular analysis of the entire reporting process, this paper aims to provide researchers in the field with a clear and practical guide, thereby promoting the standardized development of systematic reviews and meta-analysis of animal experiments and enhancing their application value in scientific decision-making and translational medicine.
8.Study on the population genetic structure and phylogenetic relationship of the Han population in Dalian
Wenqian SONG ; Shihang ZHOU ; Nan XIAO ; Lingzi PAN ; Linnan SHAO ; Yuexin XIA ; Ying DUAN ; Yicheng YANG ; Chunxiang LI ; Weijian YU
Chinese Journal of Forensic Medicine 2024;39(1):88-93
Objective To study the population genetic structure and phylogenetic relationships by combining Y-STR haplotype genetic information from the Han population in Dalian with 32 domestic and foreign groups.Methods Blood samples of 958 Han male volunteers from Dalian were collected.Genetic typing of 42 genetic loci was completed using Y-STR fluorescent reagent kits and capillary electrophoresis.Related forensic parameters were calculated.Nei's standard genetic distances among 33 populations based on 17 Y-STR loci were computed,in order to create a principal coordinate analysis as well as construct a phylogenetic tree.Results The analysis of genetic polymorphisms at 42 Y-STR loci revealed 30 unconventional alleles at 10 loci.Genetic analysis of the population based on 17 Y-STR loci confirmed that Dalian's Han population had the closest genetic distance to the Anshan's Han population,followed by populations from Henan,Heilongjiang,Jilin,Shandong,and Chongqing.Furthermore,the genetic distances between the Han population in Dalian and the Qiang population in Beichuan or the Miao population in Guizhou were relatively closer than that to the Manchu population living in Liaoning.Conclusion The genetic distance between the Han population in Dalian and other groups is not entirely proportional to ethnicities and geographical proximity.Both population migration and ethnic assimilation or isolation may have influence on it.
9.Influencing factors of occupational stress and health effect among grassroots medical and health personnel in Xiong’an New Area, Hebei Province based on Bayesian network
Huixia LI ; Junqin ZHAO ; Lixin YANG ; Qiuying DONG ; Jinmei SHI ; Jianguo LI ; Chunxiang ZHAO ; Yan GAO
Journal of Environmental and Occupational Medicine 2024;41(12):1400-1406
Background Grassroots medical and health personnel are an important component of China's public health system, and guaranteeing their physical and mental health will have a profound impact on the development of China's health service. Objective To identify potential influencing factors of occupational stress, anxiety, depression, and insomnia as well as their interactions. Methods In August 2021, a cross-sectional survey was conducted among all the staff (
10.Molecular characteristics of HA1 and NA genes of influenza A (H3N2) virus in Yancheng city from 2022 to 2024
Chunxiang LI ; Xiongying SUN ; Min YANG ; Peng SHEN ; Jiajing YUAN ; Min ZHANG ; Chen CHEN ; Changcheng LI ; Guoqing CHEN
Chinese Journal of Experimental and Clinical Virology 2024;38(4):446-453
Objective:To analyze the molecular evolutional characteristics of the hemagglutinin and neuraminidase genes of influenza A (H3N2) viruses isolated in Yancheng from 2022 to 2024.Methods:The throat swab specimens of influenza-like illness ( ILI) from sentinel surveillance hospital and outbreak sites were detected using the method of real time Rt-qPCR. The influenza A(H3N2) viruses were isolated using MDCK cells culture method from April 2022 to Marh 2024. The strains isolated from 2022 to 2024 were selected randomly and their sequences of the HA1 and NA genes were amplified through one step RT-PCR method and the PCR products were sequenced.The nucleotide and amino acid site variations and evolutionary characteristics of the genes were analyzed using relevant bioinformatics software. The mutations of genes and nucleic acid locus were analyzed and the evolutional trees were generated using bioinformatics software.Results:A total of 5 020 samples were collected between April 2022 and March 2024, the positive detection rate of influenza virus nucleic acid was 18.59%(933/5 020).The winter and spring influenza peaks were obvious in the two monitoring seasons from April 2022 to March 2024. Among them, the summer influenza peak was obvious in the monitoring season from April 2022 to March 2023, and the H3N2 subtype influenza virus was the dominant epidemic strain in the two monitoring seasons. Genetic evolution tree displayed: the clustering relationships of the respective branches of HA1 and NA genes of 32 strains isolated in Yancheng were basically the same.The HA1 and NA genes of 24 strains isolated from 2023-2024 in Yancheng and the 2022-2024 Northern Hemisphere vaccine strain A/Darwin/9/2021 (H3N2) were located in the 3C.2a1b2a.2a.3a.1 evolutionary lineage, while the 8 strains isolated in the 2022 in Yancheng and the 2021-2022 Northern Hemisphere vaccine strain A/Cambodia/e0826360/2020 (H3N2) were located in the 3C.2a1b.2a.1a evolutionary lineage.The 6 strains (A/JSTH/11735/2023, A/JSTH/11788/2023, A/JSTH/11974/2023, A/JSYD/353/2023, A/JSYD/354/2023, A/JSTH/138/2023) all exhibited variations in the F79L, N122D, P239S, and K276E amino acid sites, which were present in both sporadic and outbreak strains. Because the strains of the antigen epitopes, receptor binding sites and glycosylation sites in the HA1 genes had a certain degree of variations in Yancheng in the 2022-2024 year, the immunogenicity matching between the 24 strains isolated in the 2023-2024 and the Northern Hemisphere vaccine strain A/Darwin/9/2021 was good, while the immunogenicity matching between the 8 strains isolated in the 2022 and the Northern Hemisphere vaccine strain A/Cambodia/e0826360/2022 was good; 32 strains isolated from 2022 to 2024 had no mutations in catalytic residues and drug resistant sites of NA genes.Conclusion:These result indicated that the HA1 and NA genes of influenza A/H3N2 viruses circulated in Yancheng city from 2022 to 2024 are changed gradually.The accumulation of these mutations would result in antigenic drift of influenza A(H3N2) viruses and increase the mismatching of the recommended vaccine strain.Compared with the vaccine strain A/Darwin/9/2021(H3N2), the strains isolated in the 2022 had substantially result in antigenic drift on the whole.The influenza A(H3N2) viruses surveillance should be strengthened to find the new mutant of virus in time.

Result Analysis
Print
Save
E-mail