1.Differential Analysis of Heart Rate Variability in Repeated Continuous Performance Tests Among Healthy Young Men
Chung-Chih HSU ; Tien-Yu CHEN ; Jia-Yi LI ; Terry B. J. KUO ; Cheryl C. H. YANG
Psychiatry Investigation 2025;22(2):148-155
Objective:
Executive function correlates with the parasympathetic nervous system (PNS) based on static heart rate variability (HRV) measurements. Our study advances this understanding by employing dynamic assessments of the PNS to explore and quantify its relationship with inhibitory control (IC).
Methods:
We recruited 31 men aged 20–35 years. We monitored their electrocardiogram (ECG) signals during the administration of the Conners’ Continuous Performance Test-II (CCPT-II) on a weekly basis over 2 weeks. HRV analysis was performed on ECG-derived RR intervals using 5-minute windows, each overlapping for the next 4 minutes to establish 1-minute intervals. For each time window, the HRV metrics extracted were: mean RR intervals, standard deviation of NN intervals (SDNN), low-frequency power with logarithm (lnLF), and high-frequency power with logarithm (lnHF). Each value was correlated with detectability and compared to the corresponding baseline value at t0.
Results:
Compared with the baseline level, SDNN and lnLF showed marked decreases during CCPT-II. The mean values of HRV showed significant correlation with d’, including mean SDNN (R=0.474, p=0.012), mean lnLF (R=0.390, p=0.045), and mean lnHF (R=0.400, p=0.032). In the 14th time window, the significant correlations included SDNN (R=0.578, p=0.002), lnLF (R=0.493, p=0.012), and lnHF (R=0.432, p=0.031). Significant correlation between d’ and HRV parameters emerged only during the initial CCPT-II.
Conclusion
A significant correlation between PNS and IC was observed in the first session alone. The IC in the repeated CCPT-II needs to consider the broader neural network.
2.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
4.Differential Analysis of Heart Rate Variability in Repeated Continuous Performance Tests Among Healthy Young Men
Chung-Chih HSU ; Tien-Yu CHEN ; Jia-Yi LI ; Terry B. J. KUO ; Cheryl C. H. YANG
Psychiatry Investigation 2025;22(2):148-155
Objective:
Executive function correlates with the parasympathetic nervous system (PNS) based on static heart rate variability (HRV) measurements. Our study advances this understanding by employing dynamic assessments of the PNS to explore and quantify its relationship with inhibitory control (IC).
Methods:
We recruited 31 men aged 20–35 years. We monitored their electrocardiogram (ECG) signals during the administration of the Conners’ Continuous Performance Test-II (CCPT-II) on a weekly basis over 2 weeks. HRV analysis was performed on ECG-derived RR intervals using 5-minute windows, each overlapping for the next 4 minutes to establish 1-minute intervals. For each time window, the HRV metrics extracted were: mean RR intervals, standard deviation of NN intervals (SDNN), low-frequency power with logarithm (lnLF), and high-frequency power with logarithm (lnHF). Each value was correlated with detectability and compared to the corresponding baseline value at t0.
Results:
Compared with the baseline level, SDNN and lnLF showed marked decreases during CCPT-II. The mean values of HRV showed significant correlation with d’, including mean SDNN (R=0.474, p=0.012), mean lnLF (R=0.390, p=0.045), and mean lnHF (R=0.400, p=0.032). In the 14th time window, the significant correlations included SDNN (R=0.578, p=0.002), lnLF (R=0.493, p=0.012), and lnHF (R=0.432, p=0.031). Significant correlation between d’ and HRV parameters emerged only during the initial CCPT-II.
Conclusion
A significant correlation between PNS and IC was observed in the first session alone. The IC in the repeated CCPT-II needs to consider the broader neural network.
5.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
6.Differential Analysis of Heart Rate Variability in Repeated Continuous Performance Tests Among Healthy Young Men
Chung-Chih HSU ; Tien-Yu CHEN ; Jia-Yi LI ; Terry B. J. KUO ; Cheryl C. H. YANG
Psychiatry Investigation 2025;22(2):148-155
Objective:
Executive function correlates with the parasympathetic nervous system (PNS) based on static heart rate variability (HRV) measurements. Our study advances this understanding by employing dynamic assessments of the PNS to explore and quantify its relationship with inhibitory control (IC).
Methods:
We recruited 31 men aged 20–35 years. We monitored their electrocardiogram (ECG) signals during the administration of the Conners’ Continuous Performance Test-II (CCPT-II) on a weekly basis over 2 weeks. HRV analysis was performed on ECG-derived RR intervals using 5-minute windows, each overlapping for the next 4 minutes to establish 1-minute intervals. For each time window, the HRV metrics extracted were: mean RR intervals, standard deviation of NN intervals (SDNN), low-frequency power with logarithm (lnLF), and high-frequency power with logarithm (lnHF). Each value was correlated with detectability and compared to the corresponding baseline value at t0.
Results:
Compared with the baseline level, SDNN and lnLF showed marked decreases during CCPT-II. The mean values of HRV showed significant correlation with d’, including mean SDNN (R=0.474, p=0.012), mean lnLF (R=0.390, p=0.045), and mean lnHF (R=0.400, p=0.032). In the 14th time window, the significant correlations included SDNN (R=0.578, p=0.002), lnLF (R=0.493, p=0.012), and lnHF (R=0.432, p=0.031). Significant correlation between d’ and HRV parameters emerged only during the initial CCPT-II.
Conclusion
A significant correlation between PNS and IC was observed in the first session alone. The IC in the repeated CCPT-II needs to consider the broader neural network.
7.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
9.Differential Analysis of Heart Rate Variability in Repeated Continuous Performance Tests Among Healthy Young Men
Chung-Chih HSU ; Tien-Yu CHEN ; Jia-Yi LI ; Terry B. J. KUO ; Cheryl C. H. YANG
Psychiatry Investigation 2025;22(2):148-155
Objective:
Executive function correlates with the parasympathetic nervous system (PNS) based on static heart rate variability (HRV) measurements. Our study advances this understanding by employing dynamic assessments of the PNS to explore and quantify its relationship with inhibitory control (IC).
Methods:
We recruited 31 men aged 20–35 years. We monitored their electrocardiogram (ECG) signals during the administration of the Conners’ Continuous Performance Test-II (CCPT-II) on a weekly basis over 2 weeks. HRV analysis was performed on ECG-derived RR intervals using 5-minute windows, each overlapping for the next 4 minutes to establish 1-minute intervals. For each time window, the HRV metrics extracted were: mean RR intervals, standard deviation of NN intervals (SDNN), low-frequency power with logarithm (lnLF), and high-frequency power with logarithm (lnHF). Each value was correlated with detectability and compared to the corresponding baseline value at t0.
Results:
Compared with the baseline level, SDNN and lnLF showed marked decreases during CCPT-II. The mean values of HRV showed significant correlation with d’, including mean SDNN (R=0.474, p=0.012), mean lnLF (R=0.390, p=0.045), and mean lnHF (R=0.400, p=0.032). In the 14th time window, the significant correlations included SDNN (R=0.578, p=0.002), lnLF (R=0.493, p=0.012), and lnHF (R=0.432, p=0.031). Significant correlation between d’ and HRV parameters emerged only during the initial CCPT-II.
Conclusion
A significant correlation between PNS and IC was observed in the first session alone. The IC in the repeated CCPT-II needs to consider the broader neural network.
10.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.

Result Analysis
Print
Save
E-mail