1.Oxylipidomics Combined with Transcriptomics Reveals Mechanism of Jianpi Huogu Prescription in Treating Steroid-induced Osteonecrosis of Femoral Head in Rats
Lili WANG ; Qun LI ; Zhixing HU ; Qianqian YAN ; Liting XU ; Xiaoxiao WANG ; Chunyan ZHU ; Yanqiong ZHANG ; Weiheng CHEN ; Haijun HE ; Chunfang LIU ; Na LIN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):190-199
ObjectiveTo unveil the mechanism of Jianpi Huogu prescription (JPHGP) in ameliorating the dyslipidemia of steroid-induced osteonecrosis of the femur head (SONFH) by oxylipidomics combined with transcriptomics. MethodsSixty SD rats were assigned into normal, model, low-, medium-, and high-dose (2.5, 5, 10 g·kg-1, respectively) JPHGP, and Jiangushengwan (1.53 g·kg-1) groups. Lipopolysaccharide was injected into the tail vein at a dose of 20 μg·kg-1 on days 1 and 2, and methylprednisolone sodium succinate was injected at a dose of 40 mg·kg-1 into the buttock muscle on days 3 to 5. The normal group received an equal volume of normal saline. Drug administration by gavage began 4 weeks after the last injection, and samples were taken after administration for 8 weeks. Hematoxylin-eosin staining was conducted to reveal the histopathological changes of the femoral head, and the number of adipocytes, the rate of empty bone lacunae, and the trabecular area were calculated. Micro-computed tomography was used for revealing the histological and histomorphometrical changes of the femoral head. Enzyme-linked immunosorbent assay was employed to measure the serum levels of triglyceride (TG), total cholesterol (TC), low-density lipoprotein (LDL), high-density lipoprotein (HDL), apolipoprotein A1 (ApoA1), and apolipoprotein B (ApoB). At the same time, the femoral head was collected for oxylipidomic and transcriptomic detection. The differential metabolites and differential genes were enriched and analyzed, and the target genes regulating lipid metabolism were predicted. The predicted target proteins were further verified by molecular docking, immunohistochemistry, and Western blot. ResultsCompared with the normal group, the model group showcased thinning of the femoral head, trabecular fracture, karyopyknosis, subchondral cystic degeneration, increases in the number of adipocytes and the rate of empty bone lacunae (P<0.01), a reduction in the trabecular area (P<0.01), decreases in BMD, Tb.Th, Tb.N, and BV/TV, and increases in Tb.Sp and BS/BV (P<0.01). Compared with the model group, the JPHGP groups showed no obvious thinning of the femoral head or subchondroidal cystic degeneration. The high- and medium-dose JPHGP groups presented declines in the number of adipocytes and the rate of empty bone lacunae, an increase in the trabecular area (P<0.05, P<0.01), rises in BMD, Tb.Th, Tb.N, and BV/TV, and decreases in Tb.Sp and BS/BV (P<0.05, P<0.01). Compared with the normal group, the model group showcased raised serum levels of TG, TC, LDL, and ApoB and lowered serum levels of HDL and ApoA1 (P<0.01). Compared with the model group, the JPHGP groups had lowered serum levels of TG, TC, LDL, and ApoB (P<0.05, P<0.01) and a risen serum level of ApoA1 (P<0.05, P<0.01). Moreover, the serum level of HDL in the high-dose JPHGP group increased (P<0.01). A total of 19 different metabolites of disease set and drug set were screened out by oxylipidomics of the femoral head, and 119 core genes with restored expression were detected by transcriptomics. The enriched pathways were mainly concentrated in inflammation, lipids, apoptosis, and osteoclast differentiation. Molecular docking, immunohistochemistry, and Western blot results showed that compared with the normal group, the model group displayed increased content of 5-lipoxygenase (5-LO) and peroxisome proliferator-activated receptor γ (PPARγ) in the femoral head (P<0.01). Compared with the model group, medium- and high-dose JPHGP reduced the content of 5-LO and PPARγ (P<0.05, P<0.01). ConclusionJPHGP can restore the levels of oxidized lipid metabolites by regulating the 5-LO-PPARγ axis to treat SONFH in rats. Relevant studies provide experimental evidence for the efficacy mechanism of JPHGP in the treatment of SONFH.
2.Oxylipidomics Combined with Transcriptomics Reveals Mechanism of Jianpi Huogu Prescription in Treating Steroid-induced Osteonecrosis of Femoral Head in Rats
Lili WANG ; Qun LI ; Zhixing HU ; Qianqian YAN ; Liting XU ; Xiaoxiao WANG ; Chunyan ZHU ; Yanqiong ZHANG ; Weiheng CHEN ; Haijun HE ; Chunfang LIU ; Na LIN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):190-199
ObjectiveTo unveil the mechanism of Jianpi Huogu prescription (JPHGP) in ameliorating the dyslipidemia of steroid-induced osteonecrosis of the femur head (SONFH) by oxylipidomics combined with transcriptomics. MethodsSixty SD rats were assigned into normal, model, low-, medium-, and high-dose (2.5, 5, 10 g·kg-1, respectively) JPHGP, and Jiangushengwan (1.53 g·kg-1) groups. Lipopolysaccharide was injected into the tail vein at a dose of 20 μg·kg-1 on days 1 and 2, and methylprednisolone sodium succinate was injected at a dose of 40 mg·kg-1 into the buttock muscle on days 3 to 5. The normal group received an equal volume of normal saline. Drug administration by gavage began 4 weeks after the last injection, and samples were taken after administration for 8 weeks. Hematoxylin-eosin staining was conducted to reveal the histopathological changes of the femoral head, and the number of adipocytes, the rate of empty bone lacunae, and the trabecular area were calculated. Micro-computed tomography was used for revealing the histological and histomorphometrical changes of the femoral head. Enzyme-linked immunosorbent assay was employed to measure the serum levels of triglyceride (TG), total cholesterol (TC), low-density lipoprotein (LDL), high-density lipoprotein (HDL), apolipoprotein A1 (ApoA1), and apolipoprotein B (ApoB). At the same time, the femoral head was collected for oxylipidomic and transcriptomic detection. The differential metabolites and differential genes were enriched and analyzed, and the target genes regulating lipid metabolism were predicted. The predicted target proteins were further verified by molecular docking, immunohistochemistry, and Western blot. ResultsCompared with the normal group, the model group showcased thinning of the femoral head, trabecular fracture, karyopyknosis, subchondral cystic degeneration, increases in the number of adipocytes and the rate of empty bone lacunae (P<0.01), a reduction in the trabecular area (P<0.01), decreases in BMD, Tb.Th, Tb.N, and BV/TV, and increases in Tb.Sp and BS/BV (P<0.01). Compared with the model group, the JPHGP groups showed no obvious thinning of the femoral head or subchondroidal cystic degeneration. The high- and medium-dose JPHGP groups presented declines in the number of adipocytes and the rate of empty bone lacunae, an increase in the trabecular area (P<0.05, P<0.01), rises in BMD, Tb.Th, Tb.N, and BV/TV, and decreases in Tb.Sp and BS/BV (P<0.05, P<0.01). Compared with the normal group, the model group showcased raised serum levels of TG, TC, LDL, and ApoB and lowered serum levels of HDL and ApoA1 (P<0.01). Compared with the model group, the JPHGP groups had lowered serum levels of TG, TC, LDL, and ApoB (P<0.05, P<0.01) and a risen serum level of ApoA1 (P<0.05, P<0.01). Moreover, the serum level of HDL in the high-dose JPHGP group increased (P<0.01). A total of 19 different metabolites of disease set and drug set were screened out by oxylipidomics of the femoral head, and 119 core genes with restored expression were detected by transcriptomics. The enriched pathways were mainly concentrated in inflammation, lipids, apoptosis, and osteoclast differentiation. Molecular docking, immunohistochemistry, and Western blot results showed that compared with the normal group, the model group displayed increased content of 5-lipoxygenase (5-LO) and peroxisome proliferator-activated receptor γ (PPARγ) in the femoral head (P<0.01). Compared with the model group, medium- and high-dose JPHGP reduced the content of 5-LO and PPARγ (P<0.05, P<0.01). ConclusionJPHGP can restore the levels of oxidized lipid metabolites by regulating the 5-LO-PPARγ axis to treat SONFH in rats. Relevant studies provide experimental evidence for the efficacy mechanism of JPHGP in the treatment of SONFH.
3.Network meta-analysis of the modeling effects of different factors on rabbit models of steroid-induced osteonecrosis of femoral head
Zhixing HU ; Qun LI ; Chao YANG ; Xiaoxiao WANG ; Luochangting FANG ; Wuqiong HOU ; Na LIN ; Weiheng CHEN ; Chunfang LIU ; Ya LIN
Chinese Journal of Tissue Engineering Research 2024;28(6):976-984
OBJECTIVE:The rabbit model of steroid-induced osteonecrosis of femoral head is the most commonly used animal model of femoral head necrosis.The pathological changes of the femoral head are close to clinical practice,however,the conditions,methods and evaluation standards of animal models reported in and outside China are not uniform,which leads to the low scientific value of animal models and is difficult to popularize.This study aimed to clarify the influence of different mold-making conditions on the establishment of steroid-induced osteonecrosis of femoral head rabbit model and analyze the appropriate conditions for the successful model establishment. METHODS:We searched the CNKI,WanFang,VIP,CBM,WoS,PubMed and EMbsae databases for the literature on the modeling of steroid-induced osteonecrosis of femoral head rabbits up to April 1,2022,completed the screening of the literature according to the inclusion and exclusion criteria and literature quality evaluation,and extracted the outcome index data in the literature.RevMan Stata and ADDIS statistical software were used to conduct a meta-analysis of the included data. RESULTS:(1)A total of 82 articles with 1 366 rabbits were included in the study.The steroid-induced osteonecrosis of femoral head modeling methods were divided into three types:steroid-alone method,steroid combined lipopolysaccharide method and steroid combined serum method.Among these,33 articles used steroid-alone method;20 articles used steroid combined lipopolysaccharide method;29 articles used steroid combined serum method.(2)Meta-analysis results showed that the three modeling methods significantly increased the rate of empty bone lacunae in the femoral head of steroid-induced osteonecrosis of femoral head rabbits(P<0.001),and significantly decreased the ratio of the trabecular bone area in the femoral head of steroid-induced osteonecrosis of femoral head rabbits(P<0.001).The order of empty bone lacunae rate of each modeling method was:steroid combined with lipopolysaccharide method>steroid-alone method>steroid combined with serum method>normal group,and the order of trabecular bone area rate of each modeling method was:normal group>steroid combined with serum method>steroid-alone method>steroid combined with lipopolysaccharide method.(3)The results of subgroup analysis suggested that the rate of empty bone lacunae in the rabbit model induced by steroid alone might be related to the rabbit variety and the type of steroid used for modeling(difference between groups P<0.05),in which the combined effect amount of New Zealand white rabbits was higher than that of Chinese white rabbits(P<0.05)and Japanese white rabbits,and the combined effect amount of dexamethasone was higher than that of other steroids.The rate of empty bone lacunae induced by steroid combined with lipopolysaccharide was related to the administration mode of lipopolysaccharide and the type of steroid(P<0.05),among which the combined effect of methylprednisolone sodium succinate was significantly higher than that of other steroids(P<0.05),and the combined effect of prednisolone was significantly lower than that of other steroids(P<0.05).The combined effect of lipopolysaccharide 100 μg/kg×twice was significantly lower than 10 μg/kg×twice and 50 μg/kg×twice(P<0.05).The rate of empty bone lacunae in the model induced by steroid combined with serum was related to serum dose and steroid type(P<0.05),among which the combined effect amount of dexamethasone sodium phosphate was significantly higher than other steroid types(P<0.05),and the combined effect amount of dexamethasone was significantly lower than other steroid types(P<0.05);the combined effect amount of serum"10 mL/kg+6 mL/kg"combined dose was lower than other serum doses(P<0.05). CONCLUSION:(1)With the rate of empty bone lacunae and the ratio of trabecular bone area as the judgment standard for the successful establishment of the model,the three modeling methods can successfully construct the rabbit steroid-induced osteonecrosis of femoral head model,of which the steroid combined with lipopolysaccharide method is the best.(2)New Zealand white rabbits and dexamethasone are recommended when selecting the steroid-alone method.Methylprednisolone sodium succinate and low-dose lipopolysaccharide are recommended when selecting the steroid combined with lipopolysaccharide method.Dexamethasone sodium phosphate is recommended when selecting the steroid combined with serum modeling method.
4.Comparison of Wild and Cultivated Paeoniae Radix Rubra Based on Traditional Quality Evaluation
Chunfang TIAN ; Qiannan HU ; Zhilai ZHAN ; Xiaoyan LAN ; Xiang LI ; Li ZHOU ; Tiegui NAN ; Zidong QIU ; Liping KANG
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(14):165-174
ObjectiveTo compare wild and cultivated Paeoniae Radix Rubra(PRR) in three aspects, including character, microscope, determination of primary and secondary metabolites. MethodSeventeen batches of wild and nine batches of cultivated PRR were collected,their character data were measured by vernier caliper and scales, and their paraffin sections were made by safranin-fixed green dyeing for the observation of microscopic features. The content of ethanol-soluble extracts and total tannin from wild and cultivated PRR was determined by the method of general principle 2201 and 2202 in the 2020 edition of Chinese Pharmacopoeia, the content of polysaccharides was determined by phenol-sulfuric acid method. Anthrone colorimetry was used to determine the content of starch, and Van Soest method of washing fiber was used to determine the content of fiber. The contents of fructose, glucose and sucrose in wild and cultivated PRR were determined by ultra-high performance liquid chromatography evaporative light scattering detection(UPLC-ELSD), and the secondary metabolites(gallic acid, methyl gallate, catechin, oxypaeoniflorin, albiflorin, paeoniflorin, ellagic acid, 1,3,4,6-tetragalloylglucose, galloylpaeoniflorin, 1,2,3,4,6-O-pentagalloylglucose, naringenin, benzoylpaeoniflorin and benzoylalbiflorin) were determined by UPLC. Principal component analysis(PCA) and orthogonal partial least squares-discriminant analysis(OPLS-DA) were used to analyze the data of wild and cultivated PRR, the contribution of different factors to the difference was determined according to the variable importance in the projection(VIP) value>1 and P<0.05. ResultIn term of characters, wild PRR showed the traditional characteristic of Zaopi Fencha, its outer skin was loose and easy to fall off, its surface had longitudinal furrow and wrinkle, but the outer skin of cultivated PRR was not easy to fall off, and its surface was relatively smooth. The radial texture of xylem of wild PRR cross-section was more obvious, showing radial striations, vacuoles and more cracks, while the radial texture of xylem of cultivated PRR cross-section was not obvious, dense and some had cracks. Microscopically, the number of radial vessels arranged in the xylem of wild PRR was more than that of cultivated PRR, the number of calcium oxalate clusters in the phloem and xylem of wild PRR was more than that of cultivated PRR, while the number of starch grains was significantly higher in cultivated PRR. In terms of the content of primary chemical constituents, the contents of polysaccharides and starch of cultivated PRR were significantly higher than those of wild PRR(P<0.05), while the contents of cellulose, lignin, fructose and glucose of wild PRR were significantly higher than those of cultivated PRR(P<0.05). The results of determination of 13 secondary metabolites showed that the contents of paeoniflorin, methyl gallate, catechin and oxypaeoniflorin in wild PRR were significantly higher than those in cultivated PRR(P<0.05), while the contents of albiflorin, gallic acid, ellagic acid, naringenin, benzoylpaeoniflorin and benzoylalbiflorin were significantly lower than those of cultivated PRR(P<0.05). A total of 10 variables contributing to the differentiation between wild and cultivated PRR were screened, including albiflorin, cellulose, benzoylpaeoniflorin, oxypaeoniflorin, naringenin, ellagic acid, starch, lignin, paeoniflorin and total tannins. ConclusionThere are significant differences between wild and cultivated PRR in characters, microscopic characteristics, contents of primary and secondary metabolites. It is suggested that the content ratio of paeoniflorin and albiflorin, the contents of oxypaeoniflorin and cellulose can be used as indicators to characterize production methods of PRR so as to improve the quality standard of PRR. This study can provide reference for the improvement of quality standard of PRR and the guidance of high quality production of PRR.
5.Intervention of Osteoking in Rats with Myofascial Pain Syndrome
Xiaoxiao WANG ; Qun LI ; Zhixing HU ; Changting FANGLUO ; Ruirui MING ; Tengteng XU ; Chao YANG ; Wuqiong HOU ; Lili WANG ; Yini JIANG ; Chunfang LIU ; Na LIN
Chinese Journal of Experimental Traditional Medical Formulae 2023;29(24):19-29
ObjectiveTo clarify the intervention effect of Osteoking (OK) in rats with myofascial pain syndrome (MPS) and preliminarily explore the pharmacological mechanism of OK in relieving chronic pain from the perspective of anti-inflammatory disease. MethodThe 60 SD rats were divided into normal group, model group, low, medium, and high dose OK groups (0.66, 1.31, 2.63 mL·kg-1), and positive celecoxib group (21 mg·kg-1). The MPS rat model was established by beating combined with the centrifugal exercise method, and the OK and celecoxib were given at the same time. SMALGO paw pressure pain manometer detected the shock pain point tenderness threshold of rats, and the Von-Frey needle and acetone stimulation method detected the mechanical hyperalgesia threshold and cold hyperalgesia stimulation response respectively. Eight weeks and 10 weeks after modeling, the spontaneous discharge state and convulsion response of MPS rats were determined by electromyograph (EMG) instrument. The gait changes of MPS rats were detected using a CatWalk gait analyzer. The expression levels of interleukin-1 β (IL-1β), tumor necrosis factor-α (TNF-α), substance P (SP), and bradykinin (BK) were measured by enzyme-linked immunosorbent assay (ELISA). The protein expression levels of nuclear transcription factor-κB (NF-κB) inhibiting protein α (IκBα), phosphorylates (p)- IκBα, NF-κB p65, and p-NF-κB p65 were detected in MPS rats by Western blot. The positive expression of p-NF-κB p65 was detected by immunofluorescence. ResultCompared with the normal group, the model group shows 100% positive rates for EMG signal and local convulsions response at both the 8th and 10th weeks. The tenderness threshold and mechanical hyperalgesia threshold are significantly reduced. Cold hyperalgesia score is significantly increased, and gait is abnormal. The expression levels of serum and trigger points IL-1β, TNF-α, SP, BK, p-IκBα, and p-NF-κB p65, as well as the positive expression intensity of p-NF-κB p65 are significantly increased (P<0.01). Compared with the model group, the positive rate of EMG detection and local convulsion response is significantly reduced in the medium and high dose OK groups (P<0.05). The tenderness threshold and mechanical hyperalgesia threshold increase significantly in the medium and high dose OK groups, and the cold hyperalgesia score is significantly reduced in the high dose OK group (P<0.01). The standing time, swing time, and walking period are significantly increased. The swing speed, maximum contact area, and maximum contact intensity are significantly decreased in the high dose OK group (P<0.05). Moreover, the protein expression levels of p-IκBα/IκBα and p-NF-κB p65/NF-κB p65 are significantly reduced in the medium and high dose OK groups (P<0.05,P<0.01). The positive expression intensity of p-NF-κB p65 is significantly decreased in the high dose OK group (P<0.01). ConclusionThe mechanism of OK in relieving the pain in trigger points of MPS and improving gait abnormalities is related to the downregulation of the NF-κB p65 inflammatory signaling pathway to reduce the expression of inflammatory factors and pain mediators in blood and trigger point tissue.
6.Mechanism of Osteoking in Improving Energy Metabolism in Rats with Myofascial Pain Syndrome Based on cAMP/PKA/PGC1α Signaling Pathway
Xiaoxiao WANG ; Qun LI ; Chao YANG ; Changting FANGLUO ; Zhixing HU ; Lili WANG ; Suya ZAHNG ; Xueting LIU ; Yanqiong ZHANG ; Chunfang LIU ; Na LIN
Chinese Journal of Experimental Traditional Medical Formulae 2023;29(24):54-62
ObjectiveFrom the perspective of energy metabolism, the mechanism of Osteoking (OK) in the treatment of myofascial pain syndrome (MPS) was revealed through systems biology prediction combined with holistic animal experimental validation methods. MethodFirstly, the key targets of MPS and their related molecular mechanisms were predicted by the systems biology method, and the core network targets were screened. Then, the network-predicted targets were verified by animal experiments. Specifically, 60 SD rats were randomly divided into normal group, model group, low, medium, and high dose OK groups (0.66, 1.31, 2.63 mL·kg-1), and positive celecoxib group (21 mg·kg-1). The MPS model was established by beating combined with a centrifugal exercise method for eight weeks. Except for two days after modeling, the intervention of OK or celecoxib was performed. After the completion of the model, the drug was administered for two weeks. The histopathological changes of trigger point muscle tissue were observed by hematoxylin-eosin staining. The content/activity of Na-K-ATP enzyme (Na+-K+-ATPase), Ca2+ pump (Ca2+ATPase), Ca2+, lactate dehydrogenase (LDH), glutathione (GSH), malondialal (MDA), superoxide dismutase (SOD), cyclic adenosine phosphate (cAMP), and protein kinase A (PKA) in serum and/or trigger point muscle tissue in MPS rats was detected by enzyme-linked immunosorbent assay. Protein expression levels of PKA and the peroxisome proliferator-activated receptor γ coactivator 1α (PGC1α) in MPS rats were detected by immunohistochemistry. The protein expression levels of PKA, PGC1α, and mitochondrial transcription factor A (TFAM) in MPS rats were detected by Western blot. ResultThe network prediction results suggest that OK acts on the key target of energy metabolism related to the occurrence and development of MPS and may participate in the activation of the cAMP/PKA/PGC1α signaling pathway. The experimental validation results show that compared with the normal group, contracture nodules and disordered arrangement of muscle fibers appear in the trigger point muscle tissue of MPS rats. Na+-K+-ATPase, Ca2+ATPase, SOD activity, Ca2+, and GSH contents in serum and/or trigger point muscle tissue are significantly decreased (P<0.01). Both LDH activity and MDA contents are significantly increased (P<0.01), and the protein expression levels of cAMP, PKA, PGC1α, and TFAM are significantly decreased (P<0.01). Compared with the model group, OK improves the histopathological morphology of trigger point muscle fibers in MPS rats, and after the intervention of OK, Na+-K+-ATPase, Ca2+ATPase, SOD activity, Ca2+, and GSH contents in serum and/or trigger point muscle tissue in MPS rats are significantly increased (P<0.05, P<0.01). LDH activity and MDA contents are significantly reduced (P<0.05, P<0.01). The protein expression levels of cAMP, PKA, PGC1α, and TFAM are significantly increased (P<0.05, P<0.01). ConclusionThe mechanism of OK's intervention in MPS rats may be related to its effective activation of the cAMP/PKA/PGC1α signaling pathway, thus promoting mitochondrial energy metabolism and trigger point muscle fiber damage repair in muscle cells.
7.Succinate dehydrogenase deficiency renal cell carcinoma: a case report
Xingli SHAN ; Chunfang HU ; Dong WANG ; Shan ZHENG ; Changling LI
Chinese Journal of Urology 2023;44(3):222-223
Succinate dehydrogenase (SDH) defective renal cell carcinoma (RCC) is a new subtype of renal carcinoma newly identified by WHO(2016). Until now, only a few samples and a few cases have been reported retrospectively. This article reported a young female patient who was found to have a small tumor in the left kidney by physical examination and underwent left partial nephrectomy. The postoperative pathological result was SDH-RCC. There was no recurrence and metastasis of the tumor 3 months after operation.
8.Meta-analysis of Effect of Tripterygium wilfordii Polyglycoside Tablets Combined with Methotrexate and/or Leflunomide on Autoantibodies in Rheumatoid Arthritis
Chao YANG ; Zhixing HU ; Ruirui MING ; Tengteng XU ; Luochangting FANG ; Xiaoxiao WANG ; Taixian LI ; Lin CHEN ; Chunfang LIU
Chinese Journal of Experimental Traditional Medical Formulae 2023;29(5):39-48
ObjectiveTo evaluate the effect of Tripterygium wilfordii polyglycoside tablets (TWPT) combined with conventional synthetic disease-modifying antirheumatic drugs (csDMARDs) including methotrexate (MTX) and/or leflunomide (LEF) on autoantibodies in rheumatoid arthritis (RA) patients. MethodPubMed, EMBASE, Web of Science, Cochrane Library, China National Knowledge Infrastructure (CNKI), VIP, Wanfang Data, and China Biomedical Literature Service System (SinoMed) were searched for randomized controlled trials (RCTs) of TWPT combined with MTX and/or LEF in the treatment of RA patients from database inception to December 1, 2021. Primary outcome indicators included rheumatoid factor (RF) and anti-citrullinated protein antibody (ACPA), and secondary outcome indicators included immunoglobulin (IgA, IgG, and IgM) and adverse drug events (ADE). ResultThirty-one RCTs, involving 2 643 adult patients, were included, including 20 RCTs of TWPT combined with MTX, 10 of TWPT combined with LEF, and one of TWPT combined with MTX and TWPT. The follow-up time ranged from two weeks to 13 months. Compared with csDMARDs alone, TWPT combined with other drugs significantly improved serum RF of RA patients [SMD=-2.45, 95% CI [-2.97, -1.93], P<0.000 01], anti-CCP [SMD=-1.41, 95% CI (-2.35, -0.48), P=0.003], IgM [SMD=-1.90, 95% CI (-3.03, -0.76), P=0.001], and IgA [SMD=-1.18, 95% CI (-2.23, -0.12), P=0.03]. There were no significant effects on IgG [SMD=-1.02, 95% CI (-2.04, 0.01), P=0.05] and ADE [RR=0.87, 95% CI (0.66, 1.15), P=0.32]. ConclusionThe results of this study show that compared with csDMARDs alone, TWPT combined with csDMARDs can effectively improve the levels of autoantibodies in RA patients without increasing the incidence of ADE. However, due to the limited quality and quantity of the included RCTs, the relevant conclusions are only used as a reference for the clinical diagnosis and treatment of RA, and more high-quality studies are still needed to further confirm their efficacy.
9.Repair Mechanism of Jianpi Huogu Prescription on Vascular Injury in Alcohol-induced Osteonecrosis of Femoral Head Based on VEGF/VEGFR2/PI3K/Akt Signaling Pathway
Changting FANG-LUO ; Qianqian WANG ; Congcong SUN ; Qun LI ; Chao YANG ; Xiaoxiao WANG ; Zhixing HU ; Chunfang LIU ; Na LIN
Chinese Journal of Experimental Traditional Medical Formulae 2023;29(8):186-194
MethodIn the experiment, 46% vol Red Star Erguotou (10 mL·kg·d-1) was used to establish the AONFH rat model, and the intervention effect of JPHGP at different doses (2.5, 5.0, 10.0 g·kg-1) was observed. Jiangusheng pill (JGS, 1.53 g·kg-1) was selected as the positive control. After 8 weeks of administration, the bone histomorphometry of the femoral head was analyzed by Micro-CT imaging, and the area of medullary microvessels in the femoral head was detected by ink perfusion. The pathological change was observed by hematoxylin and eosin (HE) staining. The protein expressions of Platelet endothelial cell adhesion molecule-1 (CD31), VEGF, VEGFR2, PI3K, phosphor-Akt (p-Akt) and phosphatase and Tensin homologue deleted on chromosome 10 (PTEN) in the femoral head were determined by immunohistochemistry and Western blot. ResultCompared with normal group, the model group presented the fracture and thinning of trabeculae in the femoral head, increased empty bone lacunae, and elevated number and diameter of adipocytes (P<0.01). Micro-CT imaging revealed a decrease in bone mineral density (BMD), bone volume fraction (BV/TV), trabecular thickness (Tb.Th) and trabecular number (Tb.N) (P<0.05, P<0.01) while an increase in bone surface-to-volume ratio (BS/BV) and trabecular separation (Tb.Sp) (P<0.01). The results of ink perfusion showed that the area of medullary microvessels in the femoral head was reduced (P<0.01). Compared with model group, JPHGP lowered the empty bone lacunae rate as well as the number and diameter of adipocytes in the femoral head of AONFH rats. Micro-CT imaging indicated that JPHGP low-dose group had elevated BV/TV, Tb.Th and Tb.N (P<0.05, P<0.01) while decreased BS/BV (P<0.01), and there was an upward trend in BMD while a downward trend in Tb.Sp, but without statistical difference. In addition, JPHGP medium- and high-dose groups had a rise in BMD, BV/TV, Tb.Th and Tb.N (P<0.05, P<0.01), a decrease in BS/BV and Tb.Sp (P<0.05, P<0.01) and enlarged area of medullary microvessels in the femoral head (P<0.05, P<0.01). The expressions of CD31, VEGF, VEGFR2, PI3K, p-Akt in the model group were lower than those in the normal group (P<0.01), and after medium and high doses of JPHGP treatment, the expressions of CD31, PI3K and p-Akt in the femoral head of rats were up-regulated (P<0.01) while the protein expression of PTEN was down-regulated (P<0.01). Moreover, JPHGP up-regulated the expressions of VEGF and VEGFR2 (P<0.05, P<0.01). ConclusionJPHGP can repair the vascular injury in AONFH, and its mechanism may be related to the activation of VEGF/VEGFR2/PI3K/Akt signaling pathway. This study provides certain scientific basis and reference for the clinical application of JPHGP. ObjecctiveTo observe the repair effect of Jianpi Huogu prescription (JPHGP) on vascular injury in experimental alcohol-induced osteonecrosis of femoral head (AONFH), and to explore its mechanism based on vascular endothelial growth factor (VEGF)/VEGFR2/phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway.
10.Anti-swelling and Analgesic Mechanism of Jianpi Tongluo Prescription from MAPKs Signaling Pathway
Ruirui MING ; Changting FANG-LUO ; Xiaoxiao WANG ; Zhixing HU ; Chao YANG ; Tengteng XU ; Hongjie WANG ; Chunfang LIU ; Na LIN
Chinese Journal of Experimental Traditional Medical Formulae 2023;29(12):85-93
ObjectiveTo observe the anti-swelling and analgesic effects of Jianpi Tongluo prescription (JPTL) and to explore its mechanism initially. MethodA total of 120 ICR mice were divided into normal group, model group, JPTL low-, medium- and high-dose groups (5, 10, 20 g·kg-1) and positive drug (celecoxib, 0.03 g·kg-1) group, with 10 in each group (po,once a day). Complete freund's adjuvant (CFA) was used to induce the model of chronic inflammatory pain, and xylene-induced ear swelling test, hot plate test and acetic acid writhing test were performed to observe the anti-swelling and analgesic effects of different doses of JPTL in these four acute and chronic models. Further, enzyme-linked immunosorbent assay (ELISA) was used to detect the expressions of prostaglandin E2 (PGE2), interleukin-1β (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) in serum and inflammatory paw of mice with chronic inflammatory pain, and the expressions of aquaporin 1 (AQP1), aquaporin 3 (AQP3), cyclooxygenase 1 (COX1), cyclooxygenase 2 (COX2) and mitogen-activated protein kinases (MAPKs) in inflammatory paw were detected by Western blot, to explore the preliminary mechanism of JPTL. ResultCompared with the conditions in the normal group, there was a significant increase in the ear swelling of xylene-induced model mice, a shortened paw withdrawal latency in the hot plate test (P<0.01). Compared with the model group, JPTL remarkably increased the inhibition rate of xylene-induced ear swelling (P<0.05, P<0.01), prolonged the latency period of writhing caused by acetic acid and reduced the number of writhing (P<0.05, P<0.01). Compared with normal group, the degree of feet swelling in chronic inflammatory pain mice was significantly increased, the threshold of mechanical pain was decreased and the threshold of cold pain was increased (P<0.05, P<0.01), the protein contents of AQP1 and AQP3 in inflammatory feet were increased, and the contents of IL-1β, IL-6, TNF-α, PGE2 and COX2 in inflammatory feet were increased in serum and/or inflammatory feet. The protein expression levels of p-p38 MAPK, p-JNK and p-ERK in inflammatory feet were increased (P<0.01). Compared with the model group, JPTL relieved paw swelling of mice with chronic inflammatory pain, elevated mechanical withdrawal threshold while decreased cold withdrawal threshold, with analgesia lasting for 4 h and the optimal time point for analgesia being 2 h after administration (P<0.05, P<0.01). Moreover, JPTL down-regulated AQP1, AQP3, COX2, p-p38 MAPK, p-JNK and p-ERK in inflammatory paw of mice with chronic inflammatory pain and reduced IL-1β, IL-6, TNF-α, and PGE2 in serum and/or inflammatory paw, but it had no significant effect on COX1 (P<0.05, P<0.01). ConclusionJPTL has anti-swelling and analgesic effects, and its mechanism is related to inhibiting the production of cytokines and inflammatory mediators via the down-regulation of MAPKs signaling pathway, which provides an experimental basis for the clinical application of JPTL.

Result Analysis
Print
Save
E-mail