1.Clinical Study on Yiqi Huatan Tongluo Prescription Combined with Drug-Coated Balloon in the Treatment of Coronary Heart Disease of Qi Deficiency and Phlegm Stasis Obstructing Collateral Type
Mei-Chun HUANG ; Yu-Peng LIANG ; Pei-Zhong LIU ; Sheng-Yun ZHANG ; Se PENG ; Chuang-Peng LI ; He-Zhen ZHANG ; Tian-Wei LAI ; Chang-Jiang AI ; Qing LIU ; Ai-Meng ZHANG ; Shao-Hui LI
Journal of Guangzhou University of Traditional Chinese Medicine 2024;41(10):2656-2662
Objective To investigate the clinical efficacy and safety of Yiqi Huatan Tongluo Prescription(mainly composed of Fici Simplicissimae Radix,Notoginseng Radix et Rhizoma,Pinelliae Rhizoma Praeparatum,Poria,Nelumbinis Folium,and Glycyrrhizae Radix et Rhizoma,etc.)combined with drug-coated balloon(DCB)in the treatment of coronary heart disease(CHD)and to observe its effect on low-shear related serological indicators.Methods A total of 106 patients with CHD of qi deficiency and phlegm stasis obstructing collateral type who were scheduled to undergo percutaneous coronary intervention were randomly divided into a treatment group and a control group,with 53 cases in each group.The control group was treated with drug-eluting stent implantation,and the treatment group was treated with DCB.After the operation,the control group was given conventional antiplatelet aggregation drugs,and the treatment group was given oral administration of Yiqi Huatan Tongluo Prescription.The medication for the two groups lasted for 12 weeks.The changes in the serum levels of monocyte chemoattractant protein 1(MCP-1),interleukin 1 β(IL-1β)and vascular endothelial growth factor(VEGF)in the two groups were observed before and after treatment.Moreover,the traditional Chinese medicine(TCM)syndrome efficacy after treatment and the incidence of adverse events one year after operation were compared between the two groups.Results(1)After 12 weeks of treatment,the total effective rate for TCM syndrome efficacy of the treatment group was 88.68%(47/53),and that of the control group was 75.47%(40/53).The intergroup comparison(tested by chi-square test)showed that the TCM syndrome efficacy in the treatment group was significantly superior to that in the control group(P<0.05).(2)The analysis of indicators related to endothelial dysfunction in the blood flow with low shear stress showed that after treatment,the levels of serum MCP-1,IL-1βand VEGF in the control group presented no obvious changes(P>0.05),but the serum levels of MCP-1 and IL-1β in the treatment group were significantly lowered compared with those before treatment(P<0.05).The intergroup comparison showed that the decrease of serum MCP-1,IL-1β and VEGF levels in the treatment group was significantly superior to that in the control group(P<0.05).(3)The one-year follow-up after the operation showed that the total incidence of adverse events in the treatment group was 18.87%(10/53),and that in the control group was 20.75%(11/53).There was no significant difference between the two groups(P>0.05).Conclusion Yiqi Huatan Tongluo Prescription combined with DCB has definite action on the targets related to endothelial dysfunction in coronary blood flow with low shear stress,which is conducive to reducing inflammatory response,improving the symptoms of angina pectoris and enhancing clinical efficacy.The incidence of adverse events did not increase one year after operation,indicating good safety and effectiveness.
2.Effect of safflower yellow pigment injection combined with alprostadil on patients after coronary artery bypass grafting
Xin-Hua ZHANG ; Chun-Mei REN ; Li-Jie JIANG ; Wei-Guang YANG ; Hong-Ling SU ; Jing-Yu ZHAO
Chinese Journal of cardiovascular Rehabilitation Medicine 2024;33(5):590-593
Objective:To investigate the effect of safflower yellow pigment injection combined with alprostadil on patients after coronary artery bypass grafting(CABG).Methods:A total of 92 patients with coronary heart disease who received CABG in Department of Cardiovascular Surgery,Handan Central Hospital between September 2018 and September 2020 were selected.According to order of admission,they were divided into control group(n=46,from September 2018 to Sep-tember 2019,routine therapy+alprostadil after CABG)and study group(n=46,from October 2019 to September 2020,safflower yellow pigment injection based on control group),both groups were treated for 28d.On 3d after drug withdraw-al,therapeutic effect,cardiac function indexes,four myocardial enzyme spectrum and perioperative indexes were compared between two groups.Results:On 3d after drug withdrawal,compared with control group,patients in study group had sig-nificant higher total effective rate(73.9%vs.91.3%),left ventricular ejection fraction(LVEF)[(55.77±4.48)%vs.(62.18±4.21)%](P=0.028,<0.001),and significant lower left atrial diameter(LAD)[(36.83±3.45)mm vs.(32.09±3.23)mm],left ventricular end-diastolic diameter(LVEDd)[(49.04±4.65)mm vs.(43.83±5.24)mm],levels of creatine kinase(CK)[(125.13±14.21)U/L vs.(62.56±8.42)U/L],lactate dehydrogenase(LDH)[(203.58±31.63)U/L vs.(156.07±22.26)U/L],aspartate aminotransferase(AST)[(44.25±12.98)U/L vs.(35.41±12.37)U/L]and creatine kinase isoenzyme MB(CK-MB)[(28.11±9.84)U/L vs.(17.59±7.41)U/L](P<0.001 all).Conclusion:The combination of safflower yellow pigment injection and alprostadil can improve the thera-peutic effect and heart function,and reduce myocardial injury in patients after CABG.
3.Changing distribution and resistance profiles of common pathogens isolated from urine in the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Yanming LI ; Mingxiang ZOU ; Wen'en LIU ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WENG ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(3):287-299
Objective To investigate the distribution and antimicrobial resistance profiles of the common pathogens isolated from urine from 2015 to 2021 in the CHINET Antimicrobial Resistance Surveillance Program.Methods The bacterial strains were isolated from urine and identified routinely in 51 hospitals across China in the CHINET Antimicrobial Resistance Surveillance Program from 2015 to 2021.Antimicrobial susceptibility was determined by Kirby-Bauer method,automatic microbiological analysis system and E-test according to the unified protocol.Results A total of 261 893 nonduplicate strains were isolated from urine specimen from 2015 to 2021,of which gram-positive bacteria accounted for 23.8%(62 219/261 893),and gram-negative bacteria 76.2%(199 674/261 893).The most common species were E.coli(46.7%),E.faecium(10.4%),K.pneumoniae(9.8%),E.faecalis(8.7%),P.mirabilis(3.5%),P.aeruginosa(3.4%),SS.agalactiae(2.6%),and E.cloacae(2.1%).The strains were more frequently isolated from inpatients versus outpatients and emergency patients,from females versus males,and from adults versus children.The prevalence of ESBLs-producing strains in E.coli,K.pneumoniae and P.mirabilis was 53.2%,52.8%and 37.0%,respectively.The prevalence of carbapenem-resistant strains in E.coli,K.pneumoniae,P.aeruginosa and A.baumannii was 1.7%,18.5%,16.4%,and 40.3%,respectively.Lower than 10%of the E.faecalis isolates were resistant to ampicillin,nitrofurantoin,linezolid,vancomycin,teicoplanin and fosfomycin.More than 90%of the E.faecium isolates were ressitant to ampicillin,levofloxacin and erythromycin.The percentage of strains resistant to vancomycin,linezolid or teicoplanin was<2%.The E.coli,K.pneumoniae,P.aeruginosa and A.baumannii strains isolated from ICU inpatients showed significantly higher resistance rates than the corresponding strains isolated from outpatients and non-ICU inpatients.Conclusions E.coli,Enterococcus and K.pneumoniae are the most common pathogens in urinary tract infection.The bacterial species and antimicrobial resistance of urinary isolates vary with different populations.More attention should be paid to antimicrobial resistance surveillance and reduce the irrational use of antimicrobial agents.
4.Changing resistance profiles of Enterococcus in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Na CHEN ; Ping JI ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(3):300-308
Objective To understand the distribution and changing resistance profiles of clinical isolates of Enterococcus in hospitals across China from 2015 to 2021.Methods Antimicrobial susceptibility testing was conducted for the clinical isolates of Enterococcus according to the unified protocol of CHINET program by automated systems,Kirby-Bauer method,or E-test strip.The results were interpreted according to the Clinical & Laboratory Standards Institute(CLSI)breakpoints in 2021.WHONET 5.6 software was used for statistical analysis.Results A total of 124 565 strains of Enterococcus were isolated during the 7-year period,mainly including Enterococcus faecalis(50.7%)and Enterococcus faecalis(41.5%).The strains were mainly isolated from urinary tract specimens(46.9%±2.6%),and primarily from the patients in the department of internal medicine,surgery and ICU.E.faecium and E.faecalis strains showed low level resistance rate to vancomycin,teicoplanin and linezolid(≤3.6%).The prevalence of vancomycin-resistant E.faecalis and E.faecium was 0.1%and 1.3%,respectively.The prevalence of linezolid-resistant E.faecalis increased from 0.7%in 2015 to 3.4%in 2021,while the prevalence of linezolid-resistant E.faecium was 0.3%.Conclusions The clinical isolates of Enterococcus were still highly susceptible to vancomycin,teicoplanin,and linezolid,evidenced by a low resistance rate.However,the prevalence of linezolid-resistant E.faecalis was increasing during the 7-year period.It is necessary to strengthen antimicrobial resistance surveillance to effectively identify the emergence of antibiotic-resistant bacteria and curb the spread of resistant pathogens.
5.Changing resistance profiles of Enterobacter isolates in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Shaozhen YAN ; Ziyong SUN ; Zhongju CHEN ; Yang YANG ; Fupin HU ; Demei ZHU ; Yi XIE ; Mei KANG ; Fengbo ZHANG ; Ping JI ; Zhidong HU ; Jin LI ; Sufang GUO ; Han SHEN ; Wanqing ZHOU ; Yingchun XU ; Xiaojiang ZHANG ; Xuesong XU ; Chao YAN ; Chuanqing WANG ; Pan FU ; Wei JIA ; Gang LI ; Yuanhong XU ; Ying HUANG ; Dawen GUO ; Jinying ZHAO ; Wen'en LIU ; Yanming LI ; Hua YU ; Xiangning HUANG ; Bin SHAN ; Yan DU ; Shanmei WANG ; Yafei CHU ; Yuxing NI ; Jingyong SUN ; Yunsong YU ; Jie LIN ; Chao ZHUO ; Danhong SU ; Lianhua WEI ; Fengmei ZOU ; Yan JIN ; Chunhong SHAO ; Jihong LI ; Lixia ZHANG ; Juan MA ; Yunzhuo CHU ; Sufei TIAN ; Jinju DUAN ; Jianbang KANG ; Ruizhong WANG ; Hua FANG ; Fangfang HU ; Yunjian HU ; Xiaoman AI ; Fang DONG ; Zhiyong LÜ ; Hong ZHANG ; Chun WANG ; Yong ZHAO ; Ping GONG ; Lei ZHU ; Jinhua MENG ; Xiaobo MA ; Yanping ZHENG ; Jinsong WU ; Yuemei LU ; Ruyi GUO ; Yan ZHU ; Kaizhen WEN ; Yirong ZHANG ; Chunlei YUE ; Jiangshan LIU ; Wenhui HUANG ; Shunhong XUE ; Xuefei HU ; Hongqin GU ; Jiao FENG ; Shuping ZHOU ; Yan ZHOU ; Yunsheng CHEN ; Qing MENG ; Bixia YU ; Jilu SHEN ; Rui DOU ; Shifu WANG ; Wen HE ; Longfeng LIAO ; Lin JIANG
Chinese Journal of Infection and Chemotherapy 2024;24(3):309-317
Objective To examine the changing antimicrobial resistance profile of Enterobacter spp.isolates in 53 hospitals across China from 2015 t0 2021.Methods The clinical isolates of Enterobacter spp.were collected from 53 hospitals across China during 2015-2021 and tested for antimicrobial susceptibility using Kirby-Bauer method or automated testing systems according to the CHINET unified protocol.The results were interpreted according to the breakpoints issued by the Clinical & Laboratory Standards Institute(CLSI)in 2021(M100 31st edition)and analyzed with WHONET 5.6 software.Results A total of 37 966 Enterobacter strains were isolated from 2015 to 2021.The proportion of Enterobacter isolates among all clinical isolates showed a fluctuating trend over the 7-year period,overall 2.5%in all clinical isolates amd 5.7%in Enterobacterale strains.The most frequently isolated Enterobacter species was Enterobacter cloacae,accounting for 93.7%(35 571/37 966).The strains were mainly isolated from respiratory specimens(44.4±4.6)%,followed by secretions/pus(16.4±2.3)%and urine(16.0±0.9)%.The strains from respiratory samples decreased slightly,while those from sterile body fluids increased over the 7-year period.The Enterobacter strains were mainly isolated from inpatients(92.9%),and only(7.1±0.8)%of the strains were isolated from outpatients and emergency patients.The patients in surgical wards contributed the highest number of isolates(24.4±2.9)%compared to the inpatients in any other departement.Overall,≤ 7.9%of the E.cloacae strains were resistant to amikacin,tigecycline,polymyxin B,imipenem or meropenem,while ≤5.6%of the Enterobacter asburiae strains were resistant to these antimicrobial agents.E.asburiae showed higher resistance rate to polymyxin B than E.cloacae(19.7%vs 3.9%).Overall,≤8.1%of the Enterobacter gergoviae strains were resistant to tigecycline,amikacin,meropenem,or imipenem,while 10.5%of these strains were resistant to polycolistin B.The overall prevalence of carbapenem-resistant Enterobacter was 10.0%over the 7-year period,but showing an upward trend.The resistance profiles of Enterobacter isolates varied with the department from which they were isolated and whether the patient is an adult or a child.The prevalence of carbapenem-resistant E.cloacae was the highest in the E.cloacae isolates from ICU patients.Conclusions The results of the CHINET Antimicrobial Resistance Surveillance Program indicate that the proportion of Enterobacter strains in all clinical isolates fluctuates slightly over the 7-year period from 2015 to 2021.The Enterobacter strains showed increasing resistance to multiple antimicrobial drugs,especially carbapenems over the 7-year period.
6.Changing resistance profiles of Proteus,Morganella and Providencia in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Yunmin XU ; Xiaoxue DONG ; Bin SHAN ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Ping JI ; Fengbo ZHANG ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Hongyan ZHENG ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Wenhui HUANG ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(4):410-417
Objective To understand the changing distribution and antimicrobial resistance profiles of Proteus,Morganella and Providencia in hospitals across China from January 1,2015 to December 31,2021 in the CHINET Antimicrobial Resistance Surveillance Program.Methods Antimicrobial susceptibility testing was carried out following the unified CHINET protocol.The results were interpreted in accordance with the breakpoints in the 2021 Clinical & Laboratory Standards Institute(CLSI)M100(31 st Edition).Results A total of 32 433 Enterobacterales strains were isolated during the 7-year period,including 24 160 strains of Proteus,6 704 strains of Morganella,and 1 569 strains of Providencia.The overall number of these Enterobacterales isolates increased significantly over the 7-year period.The top 3 specimen source of these strains were urine,lower respiratory tract specimens,and wound secretions.Proteus,Morganella,and Providencia isolates showed lower resistance rates to amikacin,meropenem,cefoxitin,cefepime,cefoperazone-sulbactam,and piperacillin-tazobactam.For most of the antibiotics tested,less than 10%of the Proteus and Morganella strains were resistant,while less than 20%of the Providencia strains were resistant.The prevalence of carbapenem-resistant Enterobacterales(CRE)was 1.4%in Proteus isolates,1.9%in Morganella isolates,and 15.6%in Providencia isolates.Conclusions The overall number of clinical isolates of Proteus,Morganella and Providencia increased significantly in the 7-year period from 2015 to 2021.The prevalence of CRE strains also increased.More attention should be paid to antimicrobial resistance surveillance and rational antibiotic use so as to prevent the emergence and increase of antimicrobial resistance.
7.Changing distribution and resistance profiles of Klebsiella strains in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Chuyue ZHUO ; Yingyi GUO ; Chao ZHUO ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Wenhui HUANG ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(4):418-426
Objective To understand the changing distribution and antimicrobial resistance profiles of Klebsiella strains in 52 hospitals across China in the CHINET Antimicrobial Resistance Surveillance Program from 2015 to 2021.Methods Antimicrobial susceptibility testing was carried out according to the unified CHINET protocol.The susceptibility results were interpreted according to the breakpoints in the Clinical & Laboratory Standards Institute(CLSI)M100 document.Results A total of 241,549 nonduplicate Klebsiella strains were isolated from 2015 to 2021,including Klebsiella pneumoniae(88.0%),Klebsiella aerogenes(5.8%),Klebsiella oxytoca(5.7%),and other Klebsiella species(0.6%).Klebsiella strains were mainly isolated from respiratory tract(48.49±5.32)%.Internal medicine(22.79±3.28)%,surgery(17.98±3.10)%,and ICU(14.03±1.39)%were the top 3 departments where Klebsiella strains were most frequently isolated.K.pneumoniae isolates showed higher resistance rate to most antimicrobial agents compared to other Klebsiella species.Klebsiella isolates maintained low resistance rates to tigecycline and polymyxin B.ESBLs-producing K.pneumoniae and K.oxytoca strains showed higher resistance rates to all the antimicrobial agents tested compared to the corresponding ESBLs-nonproducing strains.The K.pneumoniae and carbapenem-resistant K.pneumoniae(CRKP)strains isolated from ICU patients demonstrated higher resistance rates to majority of the antimicrobial agents tested than the strains isolated from non-ICU patients.The CRKP strains isolated from adult patients had higher resistance rates to most of the antimicrobial agents tested than the corresponding CRKP strains isolated from paediatric patients.Conclusions The prevalence of carbapenem-resistant strains in Klebsiella isolates increased greatly from 2015 to 2021.However,the Klebsiella isolates remained highly susceptible to tigecycline and polymyxin B.Antimicrobial resistance surveillance should still be strengthened for Klebsiella strains.
8.Changing resistance profiles of Staphylococcus isolates in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Yuling XIAO ; Mei KANG ; Yi XIE ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Ping JI ; Fengbo ZHANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Wenhui HUANG ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(5):570-580
Objective To investigate the changing distribution and antibiotic resistance profiles of clinical isolates of Staphylococcus in hospitals across China from 2015 to 2021.Methods Antimicrobial susceptibility testing was conducted for the clinical isolates of Staphylococcus according to the unified protocol of CHINET(China Antimicrobial Surveillance Network)using disk diffusion method and commercial automated systems.The CHINET antimicrobial resistance surveillance data from 2015 to 2021 were interpreted according to the 2021 CLSI breakpoints and analyzed using WHONET 5.6.Results During the period from 2015 to 2021,a total of 204,771 nonduplicate strains of Staphylococcus were isolated,including 136,731(66.8%)strains of Staphylococcus aureus and 68,040(33.2%)strains of coagulase-negative Staphylococcus(CNS).The proportions of S.aureus isolates and CNS isolates did not show significant change.S.aureus strains were mainly isolated from respiratory specimens(38.9±5.1)%,wound,pus and secretions(33.6±4.2)%,and blood(11.9±1.5)%.The CNS strains were predominantly isolated from blood(73.6±4.2)%,cerebrospinal fluid(12.1±2.5)%,and pleural effusion and ascites(8.4±2.1)%.S.aureus strains were mainly isolated from the patients in ICU(17.0±7.3)%,outpatient and emergency(11.6±1.7)%,and department of surgery(11.2±0.9)%,whereas CNS strains were primarily isolated from the patients in ICU(32.2±9.7)%,outpatient and emergency(12.8±4.7)%,and department of internal medicine(11.2±1.9)%.The prevalence of methicillin-resistant strains was 32.9%in S.aureus(MRSA)and 74.1%in CNS(MRCNS).Over the 7-year period,the prevalence of MRSA decreased from 42.1%to 29.2%,and the prevalence of MRCNS decreased from 82.1%to 68.2%.MRSA showed higher resistance rates to all the antimicrobial agents tested except trimethoprim-sulfamethoxazole than methicillin-susceptible S.aureus(MSSA).Over the 7-year period,MRSA strains showed decreasing resistance rates to gentamicin,rifampicin,and levofloxacin,MRCNS showed decreasing resistance rates to gentamicin,erythromycin,rifampicin,and trimethoprim-sulfamethoxazole,but increasing resistance rate to levofloxacin.No vancomycin-resistant strains were detected.The prevalence of linezolid-resistant MRCNS increased from 0.2%to 2.3%over the 7-year period.Conclusions Staphylococcus remains the major pathogen among gram-positive bacteria.MRSA and MRCNS were still the principal antibiotic-resistant gram-positive bacteria.No S.aureus isolates were found resistant to vancomycin or linezolid,but linezolid-resistant strains have been detected in MRCNS isolates,which is an issue of concern.
9.Cross-sectional study of prevalence and association factors for hypertension comorbid depressive and anxiety disorders
Yushu ZHANG ; Limin WANG ; Yueqin HUANG ; Mei ZHANG ; Zhenping ZHAO ; Xiao ZHANG ; Chun LI ; Zhengjing HUANG ; Zhaorui LIU ; Tingting ZHANG ; Xingxing GAO ; Bo JIANG
Chinese Mental Health Journal 2024;38(12):1021-1027
Objective:To study the prevalence and association factors of depressive and anxiety disorders in the hypertensive population.Methods:Using the database obtained from the 2013 China Chronic Disease and Risk Factor Surveillance and the 2013-2015 China Mental Health Survey,4 861 hypertensive residents were used as study subjects.And using the Diagnostic and Statistical Manual of Mental Disorders,Fourth Edition(DSM-Ⅳ)as diagnostic criterion for depressive and anxiety disorders,the 12-month prevalence was calculated.Multifactorial lo-gistic regression models were used to explore the association factors of hypertension comorbid depressive and anxie-ty disorders.Results:The 12-month prevalence rates of depressive disorders and anxiety disorders were 4.1%and 5.0%in 4 861 hypertensive residents.Chinese Han[OR(95%CI):2.00(1.01-3.93)],lack of sleep[OR(95%CI):1.82(1.34-2.48)],having myocardial infarction[OR(95%CI):2.35(1.18~4.67)]and stroke in the past year[OR(95%CI):2.10(1.19-3.72)],and chronic obstructive pulmonary disease[OR(95%CI):2.11(1.11-4.05)]were risk factors of hypertension comorbid depressive disorder.Hypertensive people with controlled blood pressure[OR(95%CI):2.01(1.30-3.13)]had a higher risk of co-morbid depressive disorder than those with blood pressure above the normal range on this measurement.Chinese Han[OR(95%CI):2.51(1.32-4.80)],Southwest China[OR(95%CI):1.64(1.02-2.63)],and lack of sleep[OR(95%CI):1.45(1.09-1.93)]were risk factors of hypertension comorbid anxiety disorder.Former but current non-smoking[OR(95%CI):0.48(0.23-0.99)]was a protective factor of hypertension comorbid anxiety disorder.Conclusion:The 12-month prevalence of anxiety disorder was higher than that of depressive disorder in this hypertensive population.Both Han and sleep deprived hypertensive people had a higher risk of comorbid depressive and anxiety disorders.
10.Clinical characteristics and risk factors for bronchoscopic airway mucus hypersecretion in childhood pneumonia infected by different pathogens.
Jiang Yu CAI ; Chun Yu YAN ; Xiao Qing WANG ; Zheng Xiu LUO ; Jian LUO ; Qu Bei LI ; En Mei LIU ; Yu DENG
Chinese Journal of Pediatrics 2023;61(8):719-725
Objective: To investigate the risk factors for airway mucus hypersecretion in childhood pneumonia infected by different pathogens. Method: A retrospective cohort included 968 children who were hospitalized for Mycoplasma pneumoniae pneumonia (MPP), respiratory syncytial virus (RSV) pneumonia, adenovirus pneumonia and underwent bronchoscopy in Respiratory Department of Children's Hospital of Chongqing Medical University from January 2019 to December 2021 was conducted. The children were divided into two groups distinguished by airway mucus secretion according to the airway mucus hypersecretion score which were scored according to the mucus secretion under the bronchoscope. The demographic characteristics, clinical characteristics, laboratory tests and disease severity of the two groups were compared. And the risk factors for the development of airway mucus hypersecretion in two groups were analyzed. Chi square test, Mann-Whithey U test and Fisher exact test were used to analyze the differences between the two groups, and multivariate Logistic regression was used to analyze the influencing factors. Result: There were 559 males and 409 females in the 968 children, with an age of 4.0 (1.4, 6.0) years. Among the 642 children with MPP, 185 cases were in the hypersecretion group and 457 cases were in the non-hypersecretion group. There were 41 cases in the hypersecretion group and 160 cases in the non-hypersecretion group of 201 children with RSV pneumonia. In the 125 children with adenovirus pneumonia, there were 39 cases in the hypersecretion group and 86 cases in the non-hypersecretion group. In these children, the age of children in the hypersecretion group was older than that in the non-hypersecretion group (6.0 (4.0, 7.0) vs. 5.0 (3.0, 7.0) years old, 1.5 (0.5, 3.6) vs. 0.8 (0.4, 1.6) years old, 2.0 (1.2, 4.5) vs. 1.3 (0.8, 2.0) years old, U=35 295.00, 2 492.00, 1 101.00, all P<0.05). Through multivariate Logistic regression analysis it found that increased risk of airway mucus hypersecretion was present in childhood MPP with increase in peripheral blood white blood cell count (OR=3.30, 95%CI 1.51-7.93, P=0.004) or increase in neutrophil ratio (OR=2.24, 95%CI 1.16-4.33, P=0.016) or decrease in lymphocyte count (OR=3.22, 95%CI 1.66-6.31, P<0.001) or decrease in serum albumin (OR=2.00, 95%CI 1.01-3.98, P=0.047). The risk of airway mucus hypersecretion was increased in children with RSV pneumonia combined with elevated peripheral blood eosinophils (OR=3.04, 95%CI 1.02-8.93, P=0.043). Meanwhile, airway mucus hypersecretion was associated with severe pneumonia (OR=2.46, 95%CI 1.03-6.15, P=0.047) in children with RSV pneumonia. Older age was associated with increased risk of airway mucus hypersecretion in children with adenovirus pneumonia (OR=1.02, 95%CI 1.00-1.04, P=0.026). In these children with occurrence of pulmonary rales, wheezes or sputum sounds (OR=3.65, 95%CI 1.22-12.64, P=0.028) had an increased risk of airway mucus hypersecretion. Neutrophils in bronchoalveolar lavage fluid (BALF) demonstrated higher ratio in hypersecretion group from children with MPP (0.65 (0.43, 0.81) vs. 0.59 (0.34, 0.76), U=24 507.00, P<0.01), while the proportion of macrophages in BALF was lower (0.10 (0.05, 0.20) vs. 0.12 (0.06, 0.24), U=33 043.00, P<0.05). Nucleated cell count and neutrophil ratio in BALF were higher in hypersecretion group of children with RSV pneumonia (1 210 (442, 2 100)×106 vs. 490 (210, 1 510)×106/L, 0.43 (0.26, 0.62) vs. 0.30 (0.13, 0.52), U=2 043.00, 2 064.00, all P<0.05). Conclusions: The increase in peripheral blood white blood cell count, neutrophil ratio and decrease in lymphocyte count, serum albumin in children with MPP is related to the development of airway mucus hypersecretion. In children with RSV pneumonia, the abnormal increase of eosinophils in peripheral blood has relationship with hypersecretion. The appearance of lung rale, wheezing, and sputum rale are associated with airway mucus hypersecretion in children with adenovirus pneumonia. In addition, local neutrophil infiltration in the respiratory tract is closely related to the occurrence of airway mucus hypersecretion caused by Mycoplasma pneumoniae and RSV infection.
Child
;
Male
;
Female
;
Humans
;
Infant
;
Child, Preschool
;
Retrospective Studies
;
Respiratory Sounds
;
Pneumonia, Mycoplasma
;
Lung
;
Respiratory Syncytial Virus Infections
;
Mucus
;
Pneumonia, Viral
;
Risk Factors

Result Analysis
Print
Save
E-mail