1.Alternative Polyadenylation in Mammalian
Yu ZHANG ; Hong-Xia CHI ; Wu-Ri-Tu YANG ; Yong-Chun ZUO ; Yong-Qiang XING
Progress in Biochemistry and Biophysics 2025;52(1):32-49
With the rapid development of sequencing technologies, the detection of alternative polyadenylation (APA) in mammals has become more precise. APA precisely regulates gene expression by altering the length and position of the poly(A) tail, and is involved in various biological processes such as disease occurrence and embryonic development. The research on APA in mammals mainly focuses on the following aspects:(1) identifying APA based on transcriptome data and elucidating their characteristics; (2) investigating the relationship between APA and gene expression regulation to reveal its important role in life regulation;(3) exploring the intrinsic connections between APA and disease occurrence, embryonic development, differentiation, and other life processes to provide new perspectives and methods for disease diagnosis and treatment, as well as uncovering embryonic development regulatory mechanisms. In this review, the classification, mechanisms and functions of APA were elaborated in detail and the methods for APA identifying and APA data resources based on various transcriptome data were systematically summarized. Moreover, we epitomized and provided an outlook on research on APA, emphasizing the role of sequencing technologies in driving studies on APA in mammals. In the future, with the further development of sequencing technology, the regulatory mechanisms of APA in mammals will become clearer.
2.Full-length transcriptome sequencing and bioinformatics analysis of Polygonatum kingianum
Qi MI ; Yan-li ZHAO ; Ping XU ; Meng-wen YU ; Xuan ZHANG ; Zhen-hua TU ; Chun-hua LI ; Guo-wei ZHENG ; Jia CHEN
Acta Pharmaceutica Sinica 2024;59(6):1864-1872
The purpose of this study was to enrich the genomic information and provide a basis for further development and utilization of
3.The Quantitative Evaluation of Automatic Segmentation in Lumbar Magnetic Resonance Images
Yao-Wen LIANG ; Yu-Ting FANG ; Ting-Chun LIN ; Cheng-Ru YANG ; Chih-Chang CHANG ; Hsuan-Kan CHANG ; Chin-Chu KO ; Tsung-Hsi TU ; Li-Yu FAY ; Jau-Ching WU ; Wen-Cheng HUANG ; Hsiang-Wei HU ; You-Yin CHEN ; Chao-Hung KUO
Neurospine 2024;21(2):665-675
Objective:
This study aims to overcome challenges in lumbar spine imaging, particularly lumbar spinal stenosis, by developing an automated segmentation model using advanced techniques. Traditional manual measurement and lesion detection methods are limited by subjectivity and inefficiency. The objective is to create an accurate and automated segmentation model that identifies anatomical structures in lumbar spine magnetic resonance imaging scans.
Methods:
Leveraging a dataset of 539 lumbar spinal stenosis patients, the study utilizes the residual U-Net for semantic segmentation in sagittal and axial lumbar spine magnetic resonance images. The model, trained to recognize specific tissue categories, employs a geometry algorithm for anatomical structure quantification. Validation metrics, like Intersection over Union (IOU) and Dice coefficients, validate the residual U-Net’s segmentation accuracy. A novel rotation matrix approach is introduced for detecting bulging discs, assessing dural sac compression, and measuring yellow ligament thickness.
Results:
The residual U-Net achieves high precision in segmenting lumbar spine structures, with mean IOU values ranging from 0.82 to 0.93 across various tissue categories and views. The automated quantification system provides measurements for intervertebral disc dimensions, dural sac diameter, yellow ligament thickness, and disc hydration. Consistency between training and testing datasets assures the robustness of automated measurements.
Conclusion
Automated lumbar spine segmentation with residual U-Net and deep learning exhibits high precision in identifying anatomical structures, facilitating efficient quantification in lumbar spinal stenosis cases. The introduction of a rotation matrix enhances lesion detection, promising improved diagnostic accuracy, and supporting treatment decisions for lumbar spinal stenosis patients.
4.The Quantitative Evaluation of Automatic Segmentation in Lumbar Magnetic Resonance Images
Yao-Wen LIANG ; Yu-Ting FANG ; Ting-Chun LIN ; Cheng-Ru YANG ; Chih-Chang CHANG ; Hsuan-Kan CHANG ; Chin-Chu KO ; Tsung-Hsi TU ; Li-Yu FAY ; Jau-Ching WU ; Wen-Cheng HUANG ; Hsiang-Wei HU ; You-Yin CHEN ; Chao-Hung KUO
Neurospine 2024;21(2):665-675
Objective:
This study aims to overcome challenges in lumbar spine imaging, particularly lumbar spinal stenosis, by developing an automated segmentation model using advanced techniques. Traditional manual measurement and lesion detection methods are limited by subjectivity and inefficiency. The objective is to create an accurate and automated segmentation model that identifies anatomical structures in lumbar spine magnetic resonance imaging scans.
Methods:
Leveraging a dataset of 539 lumbar spinal stenosis patients, the study utilizes the residual U-Net for semantic segmentation in sagittal and axial lumbar spine magnetic resonance images. The model, trained to recognize specific tissue categories, employs a geometry algorithm for anatomical structure quantification. Validation metrics, like Intersection over Union (IOU) and Dice coefficients, validate the residual U-Net’s segmentation accuracy. A novel rotation matrix approach is introduced for detecting bulging discs, assessing dural sac compression, and measuring yellow ligament thickness.
Results:
The residual U-Net achieves high precision in segmenting lumbar spine structures, with mean IOU values ranging from 0.82 to 0.93 across various tissue categories and views. The automated quantification system provides measurements for intervertebral disc dimensions, dural sac diameter, yellow ligament thickness, and disc hydration. Consistency between training and testing datasets assures the robustness of automated measurements.
Conclusion
Automated lumbar spine segmentation with residual U-Net and deep learning exhibits high precision in identifying anatomical structures, facilitating efficient quantification in lumbar spinal stenosis cases. The introduction of a rotation matrix enhances lesion detection, promising improved diagnostic accuracy, and supporting treatment decisions for lumbar spinal stenosis patients.
5.The Quantitative Evaluation of Automatic Segmentation in Lumbar Magnetic Resonance Images
Yao-Wen LIANG ; Yu-Ting FANG ; Ting-Chun LIN ; Cheng-Ru YANG ; Chih-Chang CHANG ; Hsuan-Kan CHANG ; Chin-Chu KO ; Tsung-Hsi TU ; Li-Yu FAY ; Jau-Ching WU ; Wen-Cheng HUANG ; Hsiang-Wei HU ; You-Yin CHEN ; Chao-Hung KUO
Neurospine 2024;21(2):665-675
Objective:
This study aims to overcome challenges in lumbar spine imaging, particularly lumbar spinal stenosis, by developing an automated segmentation model using advanced techniques. Traditional manual measurement and lesion detection methods are limited by subjectivity and inefficiency. The objective is to create an accurate and automated segmentation model that identifies anatomical structures in lumbar spine magnetic resonance imaging scans.
Methods:
Leveraging a dataset of 539 lumbar spinal stenosis patients, the study utilizes the residual U-Net for semantic segmentation in sagittal and axial lumbar spine magnetic resonance images. The model, trained to recognize specific tissue categories, employs a geometry algorithm for anatomical structure quantification. Validation metrics, like Intersection over Union (IOU) and Dice coefficients, validate the residual U-Net’s segmentation accuracy. A novel rotation matrix approach is introduced for detecting bulging discs, assessing dural sac compression, and measuring yellow ligament thickness.
Results:
The residual U-Net achieves high precision in segmenting lumbar spine structures, with mean IOU values ranging from 0.82 to 0.93 across various tissue categories and views. The automated quantification system provides measurements for intervertebral disc dimensions, dural sac diameter, yellow ligament thickness, and disc hydration. Consistency between training and testing datasets assures the robustness of automated measurements.
Conclusion
Automated lumbar spine segmentation with residual U-Net and deep learning exhibits high precision in identifying anatomical structures, facilitating efficient quantification in lumbar spinal stenosis cases. The introduction of a rotation matrix enhances lesion detection, promising improved diagnostic accuracy, and supporting treatment decisions for lumbar spinal stenosis patients.
6.The Quantitative Evaluation of Automatic Segmentation in Lumbar Magnetic Resonance Images
Yao-Wen LIANG ; Yu-Ting FANG ; Ting-Chun LIN ; Cheng-Ru YANG ; Chih-Chang CHANG ; Hsuan-Kan CHANG ; Chin-Chu KO ; Tsung-Hsi TU ; Li-Yu FAY ; Jau-Ching WU ; Wen-Cheng HUANG ; Hsiang-Wei HU ; You-Yin CHEN ; Chao-Hung KUO
Neurospine 2024;21(2):665-675
Objective:
This study aims to overcome challenges in lumbar spine imaging, particularly lumbar spinal stenosis, by developing an automated segmentation model using advanced techniques. Traditional manual measurement and lesion detection methods are limited by subjectivity and inefficiency. The objective is to create an accurate and automated segmentation model that identifies anatomical structures in lumbar spine magnetic resonance imaging scans.
Methods:
Leveraging a dataset of 539 lumbar spinal stenosis patients, the study utilizes the residual U-Net for semantic segmentation in sagittal and axial lumbar spine magnetic resonance images. The model, trained to recognize specific tissue categories, employs a geometry algorithm for anatomical structure quantification. Validation metrics, like Intersection over Union (IOU) and Dice coefficients, validate the residual U-Net’s segmentation accuracy. A novel rotation matrix approach is introduced for detecting bulging discs, assessing dural sac compression, and measuring yellow ligament thickness.
Results:
The residual U-Net achieves high precision in segmenting lumbar spine structures, with mean IOU values ranging from 0.82 to 0.93 across various tissue categories and views. The automated quantification system provides measurements for intervertebral disc dimensions, dural sac diameter, yellow ligament thickness, and disc hydration. Consistency between training and testing datasets assures the robustness of automated measurements.
Conclusion
Automated lumbar spine segmentation with residual U-Net and deep learning exhibits high precision in identifying anatomical structures, facilitating efficient quantification in lumbar spinal stenosis cases. The introduction of a rotation matrix enhances lesion detection, promising improved diagnostic accuracy, and supporting treatment decisions for lumbar spinal stenosis patients.
7.The Quantitative Evaluation of Automatic Segmentation in Lumbar Magnetic Resonance Images
Yao-Wen LIANG ; Yu-Ting FANG ; Ting-Chun LIN ; Cheng-Ru YANG ; Chih-Chang CHANG ; Hsuan-Kan CHANG ; Chin-Chu KO ; Tsung-Hsi TU ; Li-Yu FAY ; Jau-Ching WU ; Wen-Cheng HUANG ; Hsiang-Wei HU ; You-Yin CHEN ; Chao-Hung KUO
Neurospine 2024;21(2):665-675
Objective:
This study aims to overcome challenges in lumbar spine imaging, particularly lumbar spinal stenosis, by developing an automated segmentation model using advanced techniques. Traditional manual measurement and lesion detection methods are limited by subjectivity and inefficiency. The objective is to create an accurate and automated segmentation model that identifies anatomical structures in lumbar spine magnetic resonance imaging scans.
Methods:
Leveraging a dataset of 539 lumbar spinal stenosis patients, the study utilizes the residual U-Net for semantic segmentation in sagittal and axial lumbar spine magnetic resonance images. The model, trained to recognize specific tissue categories, employs a geometry algorithm for anatomical structure quantification. Validation metrics, like Intersection over Union (IOU) and Dice coefficients, validate the residual U-Net’s segmentation accuracy. A novel rotation matrix approach is introduced for detecting bulging discs, assessing dural sac compression, and measuring yellow ligament thickness.
Results:
The residual U-Net achieves high precision in segmenting lumbar spine structures, with mean IOU values ranging from 0.82 to 0.93 across various tissue categories and views. The automated quantification system provides measurements for intervertebral disc dimensions, dural sac diameter, yellow ligament thickness, and disc hydration. Consistency between training and testing datasets assures the robustness of automated measurements.
Conclusion
Automated lumbar spine segmentation with residual U-Net and deep learning exhibits high precision in identifying anatomical structures, facilitating efficient quantification in lumbar spinal stenosis cases. The introduction of a rotation matrix enhances lesion detection, promising improved diagnostic accuracy, and supporting treatment decisions for lumbar spinal stenosis patients.
8.Asia-Pacific consensus on long-term and sequential therapy for osteoporosis
Ta-Wei TAI ; Hsuan-Yu CHEN ; Chien-An SHIH ; Chun-Feng HUANG ; Eugene MCCLOSKEY ; Joon-Kiong LEE ; Swan Sim YEAP ; Ching-Lung CHEUNG ; Natthinee CHARATCHAROENWITTHAYA ; Unnop JAISAMRARN ; Vilai KUPTNIRATSAIKUL ; Rong-Sen YANG ; Sung-Yen LIN ; Akira TAGUCHI ; Satoshi MORI ; Julie LI-YU ; Seng Bin ANG ; Ding-Cheng CHAN ; Wai Sin CHAN ; Hou NG ; Jung-Fu CHEN ; Shih-Te TU ; Hai-Hua CHUANG ; Yin-Fan CHANG ; Fang-Ping CHEN ; Keh-Sung TSAI ; Peter R. EBELING ; Fernando MARIN ; Francisco Javier Nistal RODRÍGUEZ ; Huipeng SHI ; Kyu Ri HWANG ; Kwang-Kyoun KIM ; Yoon-Sok CHUNG ; Ian R. REID ; Manju CHANDRAN ; Serge FERRARI ; E Michael LEWIECKI ; Fen Lee HEW ; Lan T. HO-PHAM ; Tuan Van NGUYEN ; Van Hy NGUYEN ; Sarath LEKAMWASAM ; Dipendra PANDEY ; Sanjay BHADADA ; Chung-Hwan CHEN ; Jawl-Shan HWANG ; Chih-Hsing WU
Osteoporosis and Sarcopenia 2024;10(1):3-10
Objectives:
This study aimed to present the Asia-Pacific consensus on long-term and sequential therapy for osteoporosis, offering evidence-based recommendations for the effective management of this chronic condition.The primary focus is on achieving optimal fracture prevention through a comprehensive, individualized approach.
Methods:
A panel of experts convened to develop consensus statements by synthesizing the current literature and leveraging clinical expertise. The review encompassed long-term anti-osteoporosis medication goals, first-line treatments for individuals at very high fracture risk, and the strategic integration of anabolic and anti resorptive agents in sequential therapy approaches.
Results:
The panelists reached a consensus on 12 statements. Key recommendations included advocating for anabolic agents as the first-line treatment for individuals at very high fracture risk and transitioning to anti resorptive agents following the completion of anabolic therapy. Anabolic therapy remains an option for in dividuals experiencing new fractures or persistent high fracture risk despite antiresorptive treatment. In cases of inadequate response, the consensus recommended considering a switch to more potent medications. The consensus also addressed the management of medication-related complications, proposing alternatives instead of discontinuation of treatment.
Conclusions
This consensus provides a comprehensive, cost-effective strategy for fracture prevention with an emphasis on shared decision-making and the incorporation of country-specific case management systems, such as fracture liaison services. It serves as a valuable guide for healthcare professionals in the Asia-Pacific region, contributing to the ongoing evolution of osteoporosis management.
9.To compare the efficacy and incidence of severe hematological adverse events of flumatinib and imatinib in patients newly diagnosed with chronic phase chronic myeloid leukemia.
Xiao Shuai ZHANG ; Bing Cheng LIU ; Xin DU ; Yan Li ZHANG ; Na XU ; Xiao Li LIU ; Wei Ming LI ; Hai LIN ; Rong LIANG ; Chun Yan CHEN ; Jian HUANG ; Yun Fan YANG ; Huan Ling ZHU ; Ling PAN ; Xiao Dong WANG ; Gui Hui LI ; Zhuo Gang LIU ; Yan Qing ZHANG ; Zhen Fang LIU ; Jian Da HU ; Chun Shui LIU ; Fei LI ; Wei YANG ; Li MENG ; Yan Qiu HAN ; Li E LIN ; Zhen Yu ZHAO ; Chuan Qing TU ; Cai Feng ZHENG ; Yan Liang BAI ; Ze Ping ZHOU ; Su Ning CHEN ; Hui Ying QIU ; Li Jie YANG ; Xiu Li SUN ; Hui SUN ; Li ZHOU ; Ze Lin LIU ; Dan Yu WANG ; Jian Xin GUO ; Li Ping PANG ; Qing Shu ZENG ; Xiao Hui SUO ; Wei Hua ZHANG ; Yuan Jun ZHENG ; Qian JIANG
Chinese Journal of Hematology 2023;44(9):728-736
Objective: To analyze and compare therapy responses, outcomes, and incidence of severe hematologic adverse events of flumatinib and imatinib in patients newly diagnosed with chronic phase chronic myeloid leukemia (CML) . Methods: Data of patients with chronic phase CML diagnosed between January 2006 and November 2022 from 76 centers, aged ≥18 years, and received initial flumatinib or imatinib therapy within 6 months after diagnosis in China were retrospectively interrogated. Propensity score matching (PSM) analysis was performed to reduce the bias of the initial TKI selection, and the therapy responses and outcomes of patients receiving initial flumatinib or imatinib therapy were compared. Results: A total of 4 833 adult patients with CML receiving initial imatinib (n=4 380) or flumatinib (n=453) therapy were included in the study. In the imatinib cohort, the median follow-up time was 54 [interquartile range (IQR), 31-85] months, and the 7-year cumulative incidences of CCyR, MMR, MR(4), and MR(4.5) were 95.2%, 88.4%, 78.3%, and 63.0%, respectively. The 7-year FFS, PFS, and OS rates were 71.8%, 93.0%, and 96.9%, respectively. With the median follow-up of 18 (IQR, 13-25) months in the flumatinib cohort, the 2-year cumulative incidences of CCyR, MMR, MR(4), and MR(4.5) were 95.4%, 86.5%, 58.4%, and 46.6%, respectively. The 2-year FFS, PFS, and OS rates were 80.1%, 95.0%, and 99.5%, respectively. The PSM analysis indicated that patients receiving initial flumatinib therapy had significantly higher cumulative incidences of CCyR, MMR, MR(4), and MR(4.5) and higher probabilities of FFS than those receiving the initial imatinib therapy (all P<0.001), whereas the PFS (P=0.230) and OS (P=0.268) were comparable between the two cohorts. The incidence of severe hematologic adverse events (grade≥Ⅲ) was comparable in the two cohorts. Conclusion: Patients receiving initial flumatinib therapy had higher cumulative incidences of therapy responses and higher probability of FFS than those receiving initial imatinib therapy, whereas the incidence of severe hematologic adverse events was comparable between the two cohorts.
Adult
;
Humans
;
Adolescent
;
Imatinib Mesylate/adverse effects*
;
Incidence
;
Antineoplastic Agents/adverse effects*
;
Retrospective Studies
;
Pyrimidines/adverse effects*
;
Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy*
;
Treatment Outcome
;
Benzamides/adverse effects*
;
Leukemia, Myeloid, Chronic-Phase/drug therapy*
;
Aminopyridines/therapeutic use*
;
Protein Kinase Inhibitors/therapeutic use*
10. The protective effect of terpinen-4-ol on inflammatory injury of VSMCs induced by high glucose through improving autophagic flux disorder
Mei HUANG ; Mei HUANG ; Meng-Xin TU ; Yan-Qi ZHANG ; Hong-Yu CHEN ; Lin-Jing WU ; Xiang-Chun SHEN ; Yi-Ni XU ; Yan-Yan ZHANG ; Meng-Xin TU ; Hong-Yu CHEN ; Yan-Yan ZHANG
Chinese Pharmacological Bulletin 2023;39(3):532-536
Aim To investigate the effect of terpinen-4-ol (T40) on inflammatory injury of vascular smooth muscle cells (VSMCs) induced by high glucose based on the improvement of autophagic flow disorder and involved molecular signals. Methods The scratch test was used to analyze the migration ability of VSMCs, the levels of IL-1β and IL-6 in cell culture supernatant were measured by ELISA, the expression levels of inflammation-related proteins NF-κb p65, p-NF-κb p65, IL-1β, IL-18 and autophagy-related proteins p62, LC3-HYLC3-I, Beclinl, p-Beclinl were de-tected by Western blot. Results T40 inhibited migration of VSMCs induced by high glucose, reduced the secretion and release of pro-inflammatory factors IL-1β and IL-6, inhibited the expression of p-NF-κb p65/ NF-κb p65, IL-1β, IL-18, downregulated the expression of p62, LC3-TJ/LC3- I and p-Beclinl at same time. After interfering the autophagic flux of VSMCs with autophagy inhibitor chloroquine (CQ) , T40 pre-treatment significantly inhibited the protein expression levels of the above inflammatory factors and autophagy-related signals which mediated by CQ. Conclusion T40 inhibits the inflammatory injury of VSMCs induced by high glucose through improving the autophagic flow disorder.

Result Analysis
Print
Save
E-mail