1.Baseline Impedance via Manometry Predicts Pathological Mean Nocturnal Baseline Impedance in Isolated Laryngopharyngeal Reflux Symptoms
Yen-Ching WANG ; Chen-Chi WANG ; Chun-Yi CHUANG ; Yung-An TSOU ; Yen-Chun PENG ; Chi-Sen CHANG ; Han-Chung LIEN
Journal of Neurogastroenterology and Motility 2025;31(1):63-74
Background/Aims:
Distal mean nocturnal baseline impedance (MNBI) measuring via pH-impedance may be valuable in diagnosing patients with suspected laryngopharyngeal reflux (LPR). However, its wide adoption is hindered by cost and invasiveness. This study investigates whether baseline impedance measured during high-resolution impedance manometry (HRIM-BI) can predict pathological MNBI.
Methods:
A cross-sectional study in Taiwan included 74 subjects suspected of LPR, who underwent HRIM (MMS) and pH-impedance testing (Diversatek), after stopping proton pump inhibitors for more than 7 days. Subjects with grade C or D esophagitis or Barrett’s esophagus were excluded. The cohort was divided into 2 groups: those with concomitant typical reflux symptoms (CTRS, n = 28) and those with isolated LPR symptoms (ILPRS, n = 46). HRIM-BI measurements focused on both distal and proximal esophagi. Pathological MNBI was identified as values below 2065 Ω, measured 3 cm above the lower esophageal sphincter.
Results:
In all subjects, distal HRIM-BI values correlated weakly with distal MNBI(r = 0.34-0.39, P < 0.005). However, in patients with ILPRS, distal HRIM-BI corelated moderately with distal MNBI(r = 0.43-0.48, P < 0.005). The areas under the receiver operating characteristic curve was 0.78 (P = 0.001) with a sensitivity of 0.83 and a specificity of 0.68. No correlation exists between distal HRIM-BI and distal MNBI in patients with CTRS, and between proximal HRIM-BI and proximal MNBI in both groups.
Conclusions
Distal HRIM-BI from HRIM may potentially predict pathological MNBI in patients with ILPRS, but not in those with CTRS. Future outcome studies linked to the metric are warranted.
2.Parkinsonism in Cerebral Autosomal Dominant Arteriopathy With Subcortical Infarcts and Leukoencephalopathy: Clinical Features and Biomarkers
Chih-Hao CHEN ; Te-Wei WANG ; Yu-Wen CHENG ; Yung-Tsai CHU ; Mei-Fang CHENG ; Ya-Fang CHEN ; Chin-Hsien LIN ; Sung-Chun TANG
Journal of Stroke 2025;27(1):122-127
3.Therapeutic Effects of Theta Burst Stimulation on Cognition Following Brain Injury
Wan-Ting CHEN ; Yi-Wei YEH ; Shin-Chang KUO ; Yi-Chih SHIAO ; Chih-Chung HUANG ; Yi-Guang WANG ; Chun-Yen CHEN
Clinical Psychopharmacology and Neuroscience 2025;23(1):161-165
This case report explores the therapeutic potential of theta burst stimulation (TBS) for cognitive enhancement in individuals with brain injuries. The study presents a 38-year-old male suffering from an organic mental disorder attributed to a traumatic brain injury (TBI), who demonstrated notable cognitive improvements following an intensive TBS protocol targeting the left dorsal lateral prefrontal cortex. The treatment led to significant enhancements in impulse control, irritability, and verbal comprehension without adverse effects. Neuropsychological assessments and brain imaging post-intervention revealed improvements in short-term memory, abstract reasoning, list-generating fluency, and increased cerebral blood flow in the prefrontal cortex. These findings suggest that TBS, by promoting neural plasticity and reconfiguring neural networks, offers a promising avenue for cognitive rehabilitation in TBI patients. Further research is warranted to optimize TBS protocols and understand the mechanisms underlying its cognitive benefits.
4.Therapeutic Effects of Theta Burst Stimulation on Cognition Following Brain Injury
Wan-Ting CHEN ; Yi-Wei YEH ; Shin-Chang KUO ; Yi-Chih SHIAO ; Chih-Chung HUANG ; Yi-Guang WANG ; Chun-Yen CHEN
Clinical Psychopharmacology and Neuroscience 2025;23(1):161-165
This case report explores the therapeutic potential of theta burst stimulation (TBS) for cognitive enhancement in individuals with brain injuries. The study presents a 38-year-old male suffering from an organic mental disorder attributed to a traumatic brain injury (TBI), who demonstrated notable cognitive improvements following an intensive TBS protocol targeting the left dorsal lateral prefrontal cortex. The treatment led to significant enhancements in impulse control, irritability, and verbal comprehension without adverse effects. Neuropsychological assessments and brain imaging post-intervention revealed improvements in short-term memory, abstract reasoning, list-generating fluency, and increased cerebral blood flow in the prefrontal cortex. These findings suggest that TBS, by promoting neural plasticity and reconfiguring neural networks, offers a promising avenue for cognitive rehabilitation in TBI patients. Further research is warranted to optimize TBS protocols and understand the mechanisms underlying its cognitive benefits.
5.Therapeutic Effects of Theta Burst Stimulation on Cognition Following Brain Injury
Wan-Ting CHEN ; Yi-Wei YEH ; Shin-Chang KUO ; Yi-Chih SHIAO ; Chih-Chung HUANG ; Yi-Guang WANG ; Chun-Yen CHEN
Clinical Psychopharmacology and Neuroscience 2025;23(1):161-165
This case report explores the therapeutic potential of theta burst stimulation (TBS) for cognitive enhancement in individuals with brain injuries. The study presents a 38-year-old male suffering from an organic mental disorder attributed to a traumatic brain injury (TBI), who demonstrated notable cognitive improvements following an intensive TBS protocol targeting the left dorsal lateral prefrontal cortex. The treatment led to significant enhancements in impulse control, irritability, and verbal comprehension without adverse effects. Neuropsychological assessments and brain imaging post-intervention revealed improvements in short-term memory, abstract reasoning, list-generating fluency, and increased cerebral blood flow in the prefrontal cortex. These findings suggest that TBS, by promoting neural plasticity and reconfiguring neural networks, offers a promising avenue for cognitive rehabilitation in TBI patients. Further research is warranted to optimize TBS protocols and understand the mechanisms underlying its cognitive benefits.
6.Baseline Impedance via Manometry Predicts Pathological Mean Nocturnal Baseline Impedance in Isolated Laryngopharyngeal Reflux Symptoms
Yen-Ching WANG ; Chen-Chi WANG ; Chun-Yi CHUANG ; Yung-An TSOU ; Yen-Chun PENG ; Chi-Sen CHANG ; Han-Chung LIEN
Journal of Neurogastroenterology and Motility 2025;31(1):63-74
Background/Aims:
Distal mean nocturnal baseline impedance (MNBI) measuring via pH-impedance may be valuable in diagnosing patients with suspected laryngopharyngeal reflux (LPR). However, its wide adoption is hindered by cost and invasiveness. This study investigates whether baseline impedance measured during high-resolution impedance manometry (HRIM-BI) can predict pathological MNBI.
Methods:
A cross-sectional study in Taiwan included 74 subjects suspected of LPR, who underwent HRIM (MMS) and pH-impedance testing (Diversatek), after stopping proton pump inhibitors for more than 7 days. Subjects with grade C or D esophagitis or Barrett’s esophagus were excluded. The cohort was divided into 2 groups: those with concomitant typical reflux symptoms (CTRS, n = 28) and those with isolated LPR symptoms (ILPRS, n = 46). HRIM-BI measurements focused on both distal and proximal esophagi. Pathological MNBI was identified as values below 2065 Ω, measured 3 cm above the lower esophageal sphincter.
Results:
In all subjects, distal HRIM-BI values correlated weakly with distal MNBI(r = 0.34-0.39, P < 0.005). However, in patients with ILPRS, distal HRIM-BI corelated moderately with distal MNBI(r = 0.43-0.48, P < 0.005). The areas under the receiver operating characteristic curve was 0.78 (P = 0.001) with a sensitivity of 0.83 and a specificity of 0.68. No correlation exists between distal HRIM-BI and distal MNBI in patients with CTRS, and between proximal HRIM-BI and proximal MNBI in both groups.
Conclusions
Distal HRIM-BI from HRIM may potentially predict pathological MNBI in patients with ILPRS, but not in those with CTRS. Future outcome studies linked to the metric are warranted.
7.Parkinsonism in Cerebral Autosomal Dominant Arteriopathy With Subcortical Infarcts and Leukoencephalopathy: Clinical Features and Biomarkers
Chih-Hao CHEN ; Te-Wei WANG ; Yu-Wen CHENG ; Yung-Tsai CHU ; Mei-Fang CHENG ; Ya-Fang CHEN ; Chin-Hsien LIN ; Sung-Chun TANG
Journal of Stroke 2025;27(1):122-127
8.Immunomodulatory effect of short-chain fatty acids in hepatic encephalopathy and its potential diagnostic value
Weiyu CHEN ; Dewen MAO ; Han WANG ; Yang DU ; Wenqian FENG ; Lei FU ; Chun YAO
Journal of Clinical Hepatology 2025;41(5):954-962
Hepatic encephalopathy (HE) is a common complication of severe liver disease in the end stage, and it is urgently needed to improve the rate of effective treatment and clarify the pathogenesis of HE. The liver is a crucial hub for immune regulation, and disruption of immune homeostasis is a key factor in the pathological mechanisms of HE. As the main metabolites of intestinal flora, short-chain fatty acids (SCFAs) play a vital role in the biological processes of both innate and adaptive immunity and can regulate the proliferation and differentiation of immune cells maintain the homeostasis of intestinal microenvironment and the integrity of barrier function. Studies have shown that SCFAs participate in bidirectional and dynamic interactions with the liver-gut-brain axis through immunomodulatory pathways, thereby playing an important role in the diagnosis, treatment, and prognostic evaluation of HE. Starting from the immunoregulatory effect of SCFAs, this article summarizes and analyzes the crosstalk relationship between SCFAs and the liver-gut-brain axis and the significance of SCFAs in the diagnosis and treatment of HE, in order to provide new ideas for optimizing clinical prevention and treatment strategies.
9.Therapeutic Effects of Theta Burst Stimulation on Cognition Following Brain Injury
Wan-Ting CHEN ; Yi-Wei YEH ; Shin-Chang KUO ; Yi-Chih SHIAO ; Chih-Chung HUANG ; Yi-Guang WANG ; Chun-Yen CHEN
Clinical Psychopharmacology and Neuroscience 2025;23(1):161-165
This case report explores the therapeutic potential of theta burst stimulation (TBS) for cognitive enhancement in individuals with brain injuries. The study presents a 38-year-old male suffering from an organic mental disorder attributed to a traumatic brain injury (TBI), who demonstrated notable cognitive improvements following an intensive TBS protocol targeting the left dorsal lateral prefrontal cortex. The treatment led to significant enhancements in impulse control, irritability, and verbal comprehension without adverse effects. Neuropsychological assessments and brain imaging post-intervention revealed improvements in short-term memory, abstract reasoning, list-generating fluency, and increased cerebral blood flow in the prefrontal cortex. These findings suggest that TBS, by promoting neural plasticity and reconfiguring neural networks, offers a promising avenue for cognitive rehabilitation in TBI patients. Further research is warranted to optimize TBS protocols and understand the mechanisms underlying its cognitive benefits.
10.Baseline Impedance via Manometry Predicts Pathological Mean Nocturnal Baseline Impedance in Isolated Laryngopharyngeal Reflux Symptoms
Yen-Ching WANG ; Chen-Chi WANG ; Chun-Yi CHUANG ; Yung-An TSOU ; Yen-Chun PENG ; Chi-Sen CHANG ; Han-Chung LIEN
Journal of Neurogastroenterology and Motility 2025;31(1):63-74
Background/Aims:
Distal mean nocturnal baseline impedance (MNBI) measuring via pH-impedance may be valuable in diagnosing patients with suspected laryngopharyngeal reflux (LPR). However, its wide adoption is hindered by cost and invasiveness. This study investigates whether baseline impedance measured during high-resolution impedance manometry (HRIM-BI) can predict pathological MNBI.
Methods:
A cross-sectional study in Taiwan included 74 subjects suspected of LPR, who underwent HRIM (MMS) and pH-impedance testing (Diversatek), after stopping proton pump inhibitors for more than 7 days. Subjects with grade C or D esophagitis or Barrett’s esophagus were excluded. The cohort was divided into 2 groups: those with concomitant typical reflux symptoms (CTRS, n = 28) and those with isolated LPR symptoms (ILPRS, n = 46). HRIM-BI measurements focused on both distal and proximal esophagi. Pathological MNBI was identified as values below 2065 Ω, measured 3 cm above the lower esophageal sphincter.
Results:
In all subjects, distal HRIM-BI values correlated weakly with distal MNBI(r = 0.34-0.39, P < 0.005). However, in patients with ILPRS, distal HRIM-BI corelated moderately with distal MNBI(r = 0.43-0.48, P < 0.005). The areas under the receiver operating characteristic curve was 0.78 (P = 0.001) with a sensitivity of 0.83 and a specificity of 0.68. No correlation exists between distal HRIM-BI and distal MNBI in patients with CTRS, and between proximal HRIM-BI and proximal MNBI in both groups.
Conclusions
Distal HRIM-BI from HRIM may potentially predict pathological MNBI in patients with ILPRS, but not in those with CTRS. Future outcome studies linked to the metric are warranted.

Result Analysis
Print
Save
E-mail