1.Study of a fetus with confined placental mosaicism for trisomy 2 in conjunct with fetal uniparental disomy and a literature review.
Chunqiang LIU ; Yan LYU ; Yulin JIANG ; Qingwei QI ; Xiya ZHOU ; Na HAO ; Mengmeng LI ; Mouhuizi GAI
Chinese Journal of Medical Genetics 2023;40(12):1461-1465
OBJECTIVE:
To carry out genetic analysis for a fetus with confined placental mosaicism (CPM) for trisomy 2 (T2) in conjunct with fetal uniparental disomy (UPD).
METHODS:
Amniocentesis and chromosomal karyotyping was carried out for a pregnant woman with a high risk for chromosome 2 anomalies indicated by non-invasive prenatal testing (NIPT). Single nucleotide polymorphism array (SNP-array) and trio-whole exome sequencing (Trio-WES) were carried out. Ultrasonography was used to closely monitor the fetal growth. Multifocal sampling of the placenta was performed after delivery for copy number variation sequencing (CNV-seq).
RESULTS:
The fetus was found to have a normal chromosomal karyotype. SNP-array has revealed multiple regions with loss of heterozygosity (LOH) on chromosome 2. Trio-WES confirmed the presence of maternal UPD for chromosome 2. Ultrasonography has revealed intrauterine growth restriction and oligohydramnios. Intrauterine fetal demise had occurred at 23+4 weeks of gestation. Pathological examination had failed to find salient visceral abnormality. The placenta was proved to contain complete T2 by CNV-seq.
CONCLUSION
T2 CPM can cause false positive result for NIPT and may be complicated with fetal UPD, leading to adverse obstetric outcomes such as intrauterine growth restriction, oligohydramnios and intrauterine fetal demise.
Female
;
Humans
;
Pregnancy
;
Amniocentesis
;
Chromosomes, Human, Pair 2/genetics*
;
DNA Copy Number Variations
;
Fetal Death
;
Fetal Growth Retardation/genetics*
;
Fetus
;
Mosaicism
;
Oligohydramnios
;
Placenta
;
Trisomy/genetics*
;
Uniparental Disomy/genetics*
2.Prenatal diagnosis and genetic analysis of a fetus with Miller-Dieker syndrome.
Chinese Journal of Medical Genetics 2021;38(1):71-73
OBJECTIVE:
To explore the genetic basis for a fetus with lissencephaly.
METHODS:
Genomic DNA was extracted from amniotic fluid sample and subjected to copy number variation (CNV) analysis.
RESULTS:
The fetus was found to harbor a heterozygous 5.2 Mb deletion at 17p13.3p13.2, which encompassed the whole critical region of Miller-Dieker syndrome (MDS) (chr17: 1-2 588 909).
CONCLUSION
The fetus was diagnosed with MDS. Deletion of the PAFAH1B1 gene may account for the lissencephaly found in the fetus.
1-Alkyl-2-acetylglycerophosphocholine Esterase/genetics*
;
Chromosome Deletion
;
Chromosomes, Human, Pair 17/genetics*
;
Classical Lissencephalies and Subcortical Band Heterotopias/genetics*
;
Female
;
Fetus
;
Genetic Testing
;
Humans
;
Microtubule-Associated Proteins/genetics*
;
Pregnancy
;
Prenatal Diagnosis
3.Clinical characterization and genetic analysis of a newborn with chromosome 8q21.11 deletion syndrome.
Suli LI ; Weiqing WU ; Jiansheng XIE ; Haifei LI
Chinese Journal of Medical Genetics 2021;38(2):145-149
OBJECTIVE:
To explore the genetic etiology for a newborn with corneal opacity.
METHODS:
The neonate and her parents were subjected to routine G-banding chromosomal karyotyping analysis. Copy number variation (CNV) was analyzed with low-coverage whole-genome sequencing (WGS) and single nucleotide polymorphism microarray (SNP array).
RESULTS:
No karyotypic abnormality was found in the newborn and her parents. Low-coverage WGS has identified a de novo 5.5 Mb microdeletion at chromosome 8q21.11-q21.13 in the neonate, which encompassed the ZFHX4 and PEX2 genes. The result was confirmed by SNP array-based CNV analysis.
CONCLUSION
The newborn was diagnosed with chromosome 8q21.11 deletion syndrome. ZFHX4 may be one of the key genes underlying this syndrome.
Chromosome Banding
;
Chromosomes, Human, Pair 8/genetics*
;
DNA Copy Number Variations
;
Female
;
Genetic Testing
;
Homeodomain Proteins/genetics*
;
Humans
;
Infant, Newborn
;
Karyotyping
;
Monosomy/genetics*
;
Peroxisomal Biogenesis Factor 2/genetics*
;
Polymorphism, Single Nucleotide
;
Transcription Factors/genetics*
4.Influence of uniparental disomy on the conclusion of paternity testing.
Bing KANG ; Dong WU ; Xin WANG ; Hongdan WANG ; Miao HE ; Shixiu LIAO
Chinese Journal of Medical Genetics 2019;36(9):938-942
OBJECTIVE:
To explore the influence of uniparental disomy (UPD) on bipartite and tripartite paternity testing.
METHODS:
Two cases of paternity testing were analyzed by multiplex amplification and capillary electrophoresis typing. Suspected UPD was verified by using single nucleotide polymorphism array (SNP array). Parental power index was calculated by using a bipartite or tripartite model.
RESULTS:
The two cases were found to harbor respectively three short tandem repeats on chromosome 2 and two short tandem repeats on chromosome 15. SNP array verified that both cases were of UPD. Case 1 had a parental power index of 122274987565.23 by a tripartite model, while case 2 had a parental power index of 13500.8463 by a bipartite model. Based on the technical specification, the conclusions supported a biological parent-child relationship in both cases.
CONCLUSION
UPD may lead to misjudgment of paternity testing. The possibility of UPD should be considered when certain loci which do not conform to Mendelian inheritance have aggregated to one chromosome.
Chromosomes, Human, Pair 2
;
genetics
;
Humans
;
Microsatellite Repeats
;
Paternity
;
Polymorphism, Single Nucleotide
;
Uniparental Disomy
;
genetics
5.Phenotypic and genetic analysis of a sibpair with partial deletion of SATB2 gene caused by 2q33.1 microdeletion.
Chunlei JIN ; Yongliang LEI ; Jiao LIU ; Qunda SHAN ; Bixia QIAN ; Fen ZHENG ; Penglong CHEN ; Junjie BAI
Chinese Journal of Medical Genetics 2019;36(6):628-631
OBJECTIVE:
To analyze the genotype and phenotype of a sibpair with partial deletion of SATB2 gene caused by 2q33.1 microdeletion.
METHODS:
Both children have featured mental retardation and development delay, and were subjected to karyotyping, single nucleotide microarray (SNP array) and real-time fluorescence quantitative PCR analysis. Karyotyping and SNP Array analysis were also carried out on their parents to verify the origin of mutation.
RESULTS:
Both sibs had a normal karyotype. SNP array showed that sib 1 had arr[hg19]2q33.1(200 192 328 - 200 197 269)×1 (4.9 kb), 2q35 (218 105 663 - 218 816 675)×3 (711 kb), while sib 2 had arr[hg19]2q33.1(200 192 328 - 200 197 269)×1 (4.9 kb), 2q35 (218 105 663-218 810 908)×3 (705.2 kb). The deletion has partially overlapped with that of 2q33.1 microdeletion syndrome and involved part of the SATB2 gene. The result of real-time fluorescence quantitative PCR assay was consistent with that of SNP assay. The duplication has originated from their father and has not been associated with any disease phenotypen.
CONCLUSION
Both sibs have carried partial deletion of SATB2 gene and had similar clinical phenotypes. Haploinsufficiency of such gene probably underlies the clinical manifestations in both patients.
Child
;
Chromosome Deletion
;
Chromosome Disorders
;
Chromosomes, Human, Pair 2
;
Genetic Testing
;
Humans
;
Karyotyping
;
Matrix Attachment Region Binding Proteins
;
genetics
;
Phenotype
;
Transcription Factors
;
genetics
6.Phenotypic and genotypic analysis of a girl carrying a 2q22.3 microduplication encompassing the MBD5 gene.
Xuelian HE ; Yufeng HUANG ; Sukun LUO ; Xiaoman CAI ; Chao ZENG ; Jun LIN
Chinese Journal of Medical Genetics 2019;36(6):624-627
OBJECTIVE:
To carry out single nucleotide polymorphism (SNP)-based chromosome microarray analysis (CMA) for a boy featuring global developmental delay.
METHODS:
The SNP array was conducted for the child, and real-time PCR was used to validate its result and identify the origin of pathological copy number variants.
RESULTS:
SNP array revealed that the patient has carried a de novo 2.5 Mb duplication at 2q22.3q23.3, which encompassed ACVR2A, KIF5C, MBD5, EPC2, LYPD6, LYPD6, MMADHC and ORC4 genes. Literature review suggested that the MBD5 gene from the duplicated region may have predisposed to the global developmental delay shown by the girl.
CONCLUSION
The patient's clinical phenotype was consistent to that of 2q23 duplication, for which the MBD5 gene may play a key role. CMA has provided an important tool for the diagnosis of patients with global developmental delay.
Child
;
Chromosome Deletion
;
Chromosomes, Human, Pair 2
;
DNA Copy Number Variations
;
DNA-Binding Proteins
;
genetics
;
Female
;
Genotype
;
Humans
;
Kinesin
;
Phenotype
7.Analysis of SATB2 gene mutation in a child with Glass syndrome.
Meili LIN ; Ruen YAO ; Jing LU ; Wei CHEN ; Yufei XU ; Guoqiang LI ; Tingting YU ; Yanrong QING ; Xingming JIN ; Jian WANG
Chinese Journal of Medical Genetics 2019;36(7):712-715
OBJECTIVE:
To analyze the clinical characteristics and genetic basis of a child affected with Glass syndrome.
METHODS:
Clinical manifestations and auxiliary examination results of the child were analyzed. Potential mutation was detected with next generation sequencing and validated by Sanger sequencing.
RESULTS:
The child has featured growth and mental retardation, delayed speech, cleft palate, crowding of teeth, and downslanting palpebral fissures. DNA sequencing revealed a de novo heterozygous missense mutation c.1166G>A (p.R389H) in exon 8 of the SATB2 gene in the child.
CONCLUSION
The heterozygous mutation c.1166G>A (p.R389H) of the SATB2 gene probably account for the Glass syndrome in the patient.
Abnormalities, Multiple
;
genetics
;
Child
;
Chromosome Deletion
;
Chromosomes, Human, Pair 2
;
Humans
;
Intellectual Disability
;
genetics
;
Matrix Attachment Region Binding Proteins
;
genetics
;
Mutation
;
Transcription Factors
;
genetics
8.A Case of Chronic Myeloid Leukemia With Rare Variant ETV6/ABL1 Rearrangement.
Soo In CHOI ; Mi Ae JANG ; Woo Joon JEONG ; Byung Ryul JEON ; Yong Wha LEE ; Hee Bong SHIN ; Dae Sik HONG ; You Kyoung LEE
Annals of Laboratory Medicine 2017;37(1):77-80
No abstract available.
Bone Marrow/pathology
;
Chromosomes, Human, Pair 12
;
Chromosomes, Human, Pair 9
;
Core Binding Factor Alpha 2 Subunit/*genetics
;
DNA/metabolism
;
Gene Rearrangement
;
Humans
;
In Situ Hybridization, Fluorescence
;
Karyotyping
;
Leukemia, Myelogenous, Chronic, BCR-ABL Positive/diagnosis/*genetics
;
Male
;
Middle Aged
;
Oncogene Proteins, Fusion/*genetics
;
Reverse Transcriptase Polymerase Chain Reaction
;
Translocation, Genetic
9.Frequency and Clinical Characteristics of Intrachromosomal Amplification of Chromosome 21 in Korean Childhood B-lineage Acute Lymphoblastic Leukemia.
Jieun KIM ; Chuhl Joo LYU ; Saeam SHIN ; Seung Tae LEE ; Jong Rak CHOI
Annals of Laboratory Medicine 2016;36(5):475-480
BACKGROUND: Intrachromosomal amplification of chromosome 21 (iAMP21) is known to be associated with poor prognosis in B-cell ALL (B-ALL). To determine the frequency and clinical characteristics of iAMP21 in Korean B-ALL patients, we performed FISH and multiplex ligation-dependent probe amplification (MLPA) analyses. METHODS: A total of 102 childhood B-ALL patients were screened with ETV6-RUNX1 FISH probes (Abbott Molecular, USA). The presence of an iAMP21 was confirmed by using MLPA P327 iAMP21-ERG probemix (MRC Holland, The Netherlands). RESULTS: iAMP21 was detected in one of the screened B-ALL patients (1/102 patients, 1.0%) who presented the ALL immunophenotype and complex karyotype at initial diagnosis. The patient relapsed twice after bone marrow transplantation. MLPA showed 12.5-Mb and 4.28-Mb regions of amplification and deletion, respectively. CONCLUSIONS: The frequency of iAMP21 is considerable in Korean pediatric patients. Our report suggests that iAMP21 in childhood B-ALL has very unfavorable impact on patient's prognosis. Additional methods such as MLPA analysis is essential to rule out patients with equivocal interphase FISH results.
Adolescent
;
Asian Continental Ancestry Group/*genetics
;
B-Lymphocytes/*metabolism
;
Child
;
Child, Preschool
;
*Chromosomes, Human, Pair 21
;
Core Binding Factor Alpha 2 Subunit/genetics
;
DNA Probes/metabolism
;
Female
;
Humans
;
Immunophenotyping
;
In Situ Hybridization, Fluorescence
;
Infant
;
Infant, Newborn
;
Male
;
Multiplex Polymerase Chain Reaction
;
Precursor Cell Lymphoblastic Leukemia-Lymphoma/*diagnosis/genetics
;
Proto-Oncogene Proteins c-ets/genetics
;
Repressor Proteins/genetics
;
Republic of Korea
;
Translocation, Genetic
;
Young Adult
10.A Novel KIT INDEL Mutation in Acute Myeloid Leukemia With t(8;21)(q22;q22); RUNX1-RUNX1T1.
Jun Hyung LEE ; Chungoo PARK ; Soo Hyun KIM ; Myung Geun SHIN
Annals of Laboratory Medicine 2016;36(4):371-374
No abstract available.
Adult
;
Amino Acid Sequence
;
Bone Marrow/metabolism/pathology
;
Chromosomes, Human, Pair 21
;
Chromosomes, Human, Pair 8
;
Core Binding Factor Alpha 2 Subunit/*genetics
;
Exons
;
Female
;
Humans
;
INDEL Mutation
;
Leukemia, Myeloid, Acute/*genetics/pathology
;
Multiplex Polymerase Chain Reaction
;
Proto-Oncogene Proteins/*genetics
;
Proto-Oncogene Proteins c-kit/*genetics
;
Transcription Factors/*genetics
;
*Translocation, Genetic

Result Analysis
Print
Save
E-mail