1.Value of chromosomal microarray analysis for the diagnosis of fetuses with anomalies of central nervous system.
Peixuan CAO ; Xiangyu ZHU ; Leilei GU ; Wei LIU ; Jie LI
Chinese Journal of Medical Genetics 2023;40(2):181-185
OBJECTIVE:
To assess the value of chromosomal microarray analysis (CMA) for the diagnosis of fetuses with anomalies of the central nervous system (CNS) and summarize the outcome of the pregnancies and follow-up.
METHODS:
A total of 636 fetuses from June 2014 to December 2020 who were referred to the Prenatal Diagnosis Center of Nanjing Drum Tower Hospital due to abnormal CNS prompted by ultrasound were selected as the research subjects. Based on the ultrasound findings, the fetuses were divided into ventricular dilatation group (n = 441), choroid plexus cyst group (n = 41), enlarged posterior fossa group (n = 42), holoprosencephaly group (n = 15), corpus callosum hypoplasia group (n = 22), and other anomaly group (n = 75). Meanwhile, they were also divided into isolated (n = 504) and non-isolated (n = 132) groups based on the presence of additional abnormalities. Prenatal samples (amniotic fluid/chorionic villi/umbilical cord blood) or abortus tissue were collected for the extraction of genomic DNA and CMA assay. Outcome of the pregnancies and postnatal follow-up were summarized and subjected to statistical analysis.
RESULTS:
In total 636 fetuses with CNS anomalies (including 89 abortus tissues) were included, and 547 cases were followed up. The overall detection rate of CMA was 11.48% (73/636). The detection rates for the holoprosencephaly group, ACC group, choroid plexus cyst group, enlarged posterior fossa group, ventricular dilatation group and other anomaly group were 80% (12/15), 31.82% (7/22), 19.51% (8/41), 14.29% (6/42), 7.48% (33/441) and 9.33% (7/75), respectively. Compared with the isolated CNS anomaly group, the detection rate for the non-isolated CNS anomaly group was significantly higher (6.35% vs. 31.06%) (32/504 vs. 41/132) (χ² = 62.867, P < 0.001). Follow up showed that, for 52 fetuses with abnormal CMA results, 51 couples have opted induced labor, whilst 1 was delivered at full term with normal growth and development. Of the 434 fetuses with normal CMA results, 377 were delivered at full term (6 had developmental delay), and 57 couples had opted induced labor. The rate of adverse pregnancy outcome for non-isolated CNS abnormal fetuses was significantly higher than that of isolated CNS abnormal fetuses (26.56% vs. 10.54%) (17/64 vs. 39/370) (χ² = 12.463, P < 0.001).
CONCLUSION
Fetuses with CNS anomaly should be tested with CMA to determine the genetic cause. Most fetuses with negative CMA result have a good prognosis, but there is still a possibility for a abnormal neurological phenotype. Fetuses with CNS abnormalities in conjunct with other structural abnormalities are at increased risk for adverse pregnancy outcomes.
Female
;
Pregnancy
;
Humans
;
Holoprosencephaly
;
Prenatal Diagnosis/methods*
;
Central Nervous System
;
Fetus/abnormalities*
;
Nervous System Malformations/genetics*
;
Microarray Analysis
;
Central Nervous System Diseases
;
Cysts
;
Chromosome Aberrations
;
Ultrasonography, Prenatal/methods*
2.Clinical phenotype and genetic analysis of a child with 3p26.3p25.3 deletion.
Jiamin SHI ; Shangqin CHEN ; Aihui LU ; Yaqin LIANG ; Qiu WANG ; Chaosheng LU ; Dan WANG
Chinese Journal of Medical Genetics 2023;40(2):234-237
OBJECTIVE:
To explore the genetic basis for a child with facial dysmorphism and multiple malformations.
METHODS:
The child, born at 34+6 weeks' gestation due to premature rupture of amniotic membrane, dichorionic diamniotic twinning and gestational diabetes, was subjected to chromosomal karyotyping analysis and copy number variations sequencing (CNV-seq).
RESULTS:
The child was found to have facial dysmorphism, hypospadia, cryptorchidism and hypotonia. He was found to have a 46,XY,del(3)(p26) karyotype in addition with a 9.80 Mb deletion (chr3: 60 000-9 860 000) encompassing 33 protein coding genes.
CONCLUSION
The 3p26.3p25.3 deletion probably underlay the multiple malformations in this child. Continuous follow-up is required to improve his quality of life.
Humans
;
Male
;
Chromosome Deletion
;
DNA Copy Number Variations
;
Quality of Life
;
Abnormalities, Multiple/genetics*
;
Phenotype
3.Clinical and genetic analysis of three children patients with Kleefstra syndrome.
Taocheng ZHOU ; Guanglei TONG ; Lijuan ZHU ; Shaoxin LI ; Hong LI ; Wenxu DONG
Chinese Journal of Medical Genetics 2022;39(2):148-151
OBJECTIVE:
To explore the genetic basis of three children with unexplained developmental delay/intellectual disability (DD/ID).
METHODS:
Peripheral blood samples were collected from the patients and subjected to chromosomal microarray analysis (CMA).
RESULTS:
Patient 1 was found to harbor a 190 kb deletion at 9q34.3, which encompassed most of EHMT1 (OMIM 607001), the key gene for Kleefstra syndrome (OMIM 610253). Patients 2 and 3 were siblings. CMA showed that they have shared four chromosomal copy number variations (CNVs) including a deletion at 9q34.3 which spanned 154 kb and 149 kb, respectively, and encompassed the EHMT1 and CACNA1B (OMIM 601012) genes. The remaining 3 CNVs were predicted to be with no clinical significance.
CONCLUSION
Microdeletions at 9q33.4 probably underlay the pathogenesis of DD/ID in the three children, for which EHMT1 may be the key gene.
Child
;
Chromosome Deletion
;
Chromosomes, Human, Pair 9
;
Craniofacial Abnormalities/genetics*
;
DNA Copy Number Variations
;
Developmental Disabilities/genetics*
;
Heart Defects, Congenital
;
Humans
;
Intellectual Disability/genetics*
4.Genetic diagnosis of a case of Smith-Magenis syndrome due to a rare small-scale deletion.
Baodong TIAN ; Donglan YU ; Guangli WANG ; Bingyi HUANG ; Chunjiang ZHU
Chinese Journal of Medical Genetics 2022;39(9):1005-1010
OBJECTIVE:
To report on a case of Smith-Magenis syndrome (SMS) due to a rare small-scale deletion.
METHODS:
Muscle samples from the the third fetus was collected after the in Medical history and clinical data of the patient were collected. The child and his parents were subjected to chromosome karyotyping analysis, multiplex ligation-dependent probe amplification (MLPA) and copy number variation sequencing (CNV-seq).
RESULTS:
The child was found to have a normal karyotype. MLPA and CNV-seq detection showed that he has harbored a 1.22 Mb deletion and a 0.3 Mb duplication in the 17p11.2 region. Neither of his parents was found to have similar deletion or duplication.
CONCLUSION
The child was diagnosed with SMS due to a rare 1.22 Mb deletion in the 17p11.2 region, which is among the smallest deletions associated with this syndrome.
Abnormalities, Multiple/genetics*
;
Child
;
Chromosome Deletion
;
Chromosomes, Human, Pair 17
;
DNA Copy Number Variations
;
Humans
;
Intellectual Disability/genetics*
;
Male
;
Smith-Magenis Syndrome/genetics*
5.CNV-seq analysis of copy number variations in 217 fetuses with nasal bone dysplasia.
Panlai SHI ; Yaqin HOU ; Duo CHEN ; Ning LIU ; Zhihui JIAO ; Yin FENG ; Gege SUN ; Ruonan ZHU ; Xiangdong KONG
Chinese Journal of Medical Genetics 2022;39(10):1076-1079
OBJECTIVE:
To assess the diagnostic value of copy number variation sequencing (CNV-seq) in the genetic etiology of fetuses with nasal bone dysplasia (NBD).
METHODS:
A total of 217 fetuses discovered with NBD from December 2017 to December 2020 were divided into the isolated NBD group and NBD combined with other anomalies group, for which copy number variations (CNVs) were analyzed.
RESULTS:
A total of 40 fetal abnormalities were detected in 217 cases, with an overall abnormal rate of 18.4%. These included 31 cases with aneuploidies (14.3%, 31/217) and 9 cases with genomic CNVs (4.1%, 9/217). Five cases of trisomy 21 (3.5%, 5/144) and two CNVs cases with unknown clinical significance (1.4%, 2/144) were detected in the isolated group. As for the combined NBD group, 26 aneuploidies (35.6%, 26/73), including 19 cases with trisomy 21, 6 cases with trisomy 18, 1 case with trisomy 13, 5 cases with pathogenic CNVs (6.8%, 5/73), and 2 cases with CNVs of unknown clinical significance (2.7%, 2/73) were detected. A significant difference was detected between the two groups (P < 0.01).
CONCLUSION
The detection rate of CNV-seq is high for chromosomal aneuploidies and pathogenic CNVs in fetuses with NBD, particularly in those combined with other ultrasonic abnormalities.
Aneuploidy
;
Bone Diseases, Developmental
;
Chromosome Aberrations
;
DNA Copy Number Variations
;
Down Syndrome/genetics*
;
Female
;
Fetus/abnormalities*
;
Humans
;
Pregnancy
;
Prenatal Diagnosis
;
Trisomy
6.Genetic analysis of three patients with Kleefstra syndrome.
Yuhong GONG ; Xiaoming ZHU ; Wen LI ; Guizhen DONG ; Biao XU ; Hongling ZHAO
Chinese Journal of Medical Genetics 2021;38(4):347-350
OBJECTIVE:
To analyze the clinical and genetic features of three patient diagnosed with Kleefstra syndrome.
METHODS:
Whole exome sequencing (WES) was carried out for the probands and their parents. Suspected variants were validated by Sanger sequencing. Copy number variations (CNV) were detected by CNV-seq and validated by real-time PCR.
RESULTS:
Proband 1 was found to carry a de novo heterogeneous variant (c.823+1G>T) of the EHMT1 gene, which may affect its expression. Based on the guidelines of the American College of Medical Genetics and Genomics, the variant was predicted to be pathogenic (PVS1+PS2+PM2). Proband 2 was found to carry a de novo missense variant c.439C>G (p.L147V) of the EHMT1 gene, which was predicted to be likely pathogenic (PS2+PM1+PM2+PP3). Proband 3 was found to carry a heterozygous 520 kb deletion at 9q34.3 by CNV-seq. The deletion has encompassed the whole of the EHMT1 gene. Real-time PCR has detected no CNV of this region in her parents.
CONCLUSION
Variants of the EHMT1 gene probably underlay the disease in these patients. Genetic testing has provided a basis for their clinical diagnosis.
Chromosome Deletion
;
Chromosomes, Human, Pair 9
;
Craniofacial Abnormalities
;
DNA Copy Number Variations
;
Female
;
Genetic Testing
;
Heart Defects, Congenital
;
Humans
;
Intellectual Disability/genetics*
;
Mutation
7.Genetic analysis of an infant with duplication of 22q12.1-q13.3.
Rui LI ; Ailing WANG ; Jianhong WANG ; Panlai SHI ; Yufei MA ; Xiangdong KONG
Chinese Journal of Medical Genetics 2020;37(5):555-558
OBJECTIVE:
To explore the genetic basis for an infant with multiple malformations including congenital heart disease and cleft palate.
METHODS:
The child and his parents were subjected to conventional chromosomal karyotyping and low-coverage massively parallel copy number variation sequencing (CNV-seq) analysis.
RESULTS:
The infant was found to have a 46,X,add(Y)(q11.23) karyotype, and his CNV-seq result was seq [hg19] 22q12.1q13.3 (29 520 001-51 180 000)× 3. His parents were found to be normal by both methods.
CONCLUSION
The additional chromosomal material found on Yq, verified as duplication of 22q12.1-q13.3, may account for the abnormal phenotype in this infant. CNV-seq has provided a useful complement for the diagnosis and more accurate information for genetic counseling.
Abnormalities, Multiple
;
genetics
;
Child
;
Chromosome Duplication
;
Chromosomes, Human, Pair 22
;
genetics
;
Cleft Palate
;
genetics
;
DNA Copy Number Variations
;
Genetic Testing
;
Heart Defects, Congenital
;
genetics
;
Humans
;
Infant
;
Karyotyping
8.Phenotypic and genetic analysis of a boy with partial trisomy of 22q.
Bo ZHANG ; Ying XU ; Jinghui KONG ; Yinsen SONG ; Dongxiao LI
Chinese Journal of Medical Genetics 2020;37(5):532-534
OBJECTIVE:
To delineate the nature and origin of chromosomal aberration in a boy with mental retardation and multiple congenital deformities.
METHODS:
Chromosomal karyotypes of the proband and his parents were determined by routine G-banding analysis. Genomic DNA was also analyzed with single nucleotide polymorphism array (SNP array).
RESULTS:
The karyotype of the proband was 46,X,add(Y)(q11.23). No karyotypic abnormality was detected in either parent. SNP array has identified a de novo 21.6 Mb duplication at 22q12qter in the proband.
CONCLUSION
The de novo 22q12qter duplication probably underlies the abnormalities in the proband.
Abnormalities, Multiple
;
genetics
;
Adult
;
Child
;
Chromosome Banding
;
Chromosomes, Human, Pair 22
;
genetics
;
Female
;
Genetic Testing
;
Humans
;
Intellectual Disability
;
genetics
;
Karyotyping
;
Male
;
Trisomy
9.Kleefstra syndrome 1 and ring chromosome 9 in a case.
Nan LYU ; Dongxiao LI ; Jingjie LI ; Qing SHANG ; Caiyun MA
Chinese Journal of Medical Genetics 2019;36(8):837-840
OBJECTIVE:
To analyze the clinical and molecular genetic characteristics of patient with Kleefstra syndrome 1.
METHODS:
Clinical data, chromosomal karyotype and whole genome copy number variations (CNVs) of the patient were analyzed.
RESULTS:
The patient was found to have a karyotype of 45,XX,-9[4]/46,XX,r(9)(p24q34)[56]. Whole-genome CNVs detection revealed that she has carried a heterozygous deletion of approximately 670 kb at 9q34.3, which encompassed the entire EHMT1 gene. The region is strongly associated with Kleefstra syndrome (1/9q telomere deletion). In addition, the patient also had heterozygous deletion of 9pter, which may predispose to formation of ring chromosome 9.
CONCLUSION
The child was diagnosed with Kleefstra syndrome type 1 in conjunct with ring chromosome 9.
Child
;
Chromosome Deletion
;
Chromosomes, Human, Pair 9
;
genetics
;
Craniofacial Abnormalities
;
genetics
;
DNA Copy Number Variations
;
Female
;
Heart Defects, Congenital
;
genetics
;
Humans
;
Intellectual Disability
;
genetics
;
Ring Chromosomes
10.Analysis of SATB2 gene mutation in a child with Glass syndrome.
Meili LIN ; Ruen YAO ; Jing LU ; Wei CHEN ; Yufei XU ; Guoqiang LI ; Tingting YU ; Yanrong QING ; Xingming JIN ; Jian WANG
Chinese Journal of Medical Genetics 2019;36(7):712-715
OBJECTIVE:
To analyze the clinical characteristics and genetic basis of a child affected with Glass syndrome.
METHODS:
Clinical manifestations and auxiliary examination results of the child were analyzed. Potential mutation was detected with next generation sequencing and validated by Sanger sequencing.
RESULTS:
The child has featured growth and mental retardation, delayed speech, cleft palate, crowding of teeth, and downslanting palpebral fissures. DNA sequencing revealed a de novo heterozygous missense mutation c.1166G>A (p.R389H) in exon 8 of the SATB2 gene in the child.
CONCLUSION
The heterozygous mutation c.1166G>A (p.R389H) of the SATB2 gene probably account for the Glass syndrome in the patient.
Abnormalities, Multiple
;
genetics
;
Child
;
Chromosome Deletion
;
Chromosomes, Human, Pair 2
;
Humans
;
Intellectual Disability
;
genetics
;
Matrix Attachment Region Binding Proteins
;
genetics
;
Mutation
;
Transcription Factors
;
genetics

Result Analysis
Print
Save
E-mail