1.Advances in Phytochemistry and Modern Pharmacology of Saposhnikovia Divaricata (Turcz.) Schischk.
Jun-Wen GAO ; Yang ZHAN ; Yun-He WANG ; Shu-Jie ZHAO ; Zhong-Ming HAN
Chinese journal of integrative medicine 2023;29(11):1033-1044
		                        		
		                        			
		                        			Saposhnikovia divaricata (Turcz.) Schischk (S. divaricata, Fangfeng) is a herb in the Apiaceae family, and its root has been used since the Western Han Dynasty (202 B.C.). Chromones and coumarins are the pharmacologically active substances in S. divaricata. Modern phytochemical and pharmacological studies have demonstrated their antipyretic, analgesic, anti-inflammatory, antioxidant, anti-tumor, and anticoagulant activities. Technological and analytical strategy theory advancements have yielded novel results; however, most investigations have been limited to the main active substances-chromones and coumarins. Hence, we reviewed studies related to the chemical composition and pharmacological activity of S. divaricata, analyzed the developing trends and challenges, and proposed that research should focus on components' synergistic effects. We also suggested that, the structure-effect relationship should be prioritized in advanced research.
		                        		
		                        		
		                        		
		                        			Drugs, Chinese Herbal/pharmacology*
		                        			;
		                        		
		                        			Coumarins/pharmacology*
		                        			;
		                        		
		                        			Apiaceae/chemistry*
		                        			;
		                        		
		                        			Chromones
		                        			
		                        		
		                        	
2.Shenxiong Glucose Injection inhibits H_2O_2-induced apoptosis of H9c2 cells by activating PI3K/AKT pathway.
Ding-Yan LU ; Jing LI ; Jia SUN ; Wei-Na XUE ; Bin HE ; Yong-Jun LI ; Yong-Lin WANG ; Chang-Hu LIN ; Ting LIU
China Journal of Chinese Materia Medica 2019;44(17):3773-3779
		                        		
		                        			
		                        			The aim of this paper was to explore the mechanism of Shenxiong Glucose Injection antagonizing apoptosis of H9 c2 cells induced by H_2O_2. H9 c2 cells were pretreated with 1. 7%,3. 4% and 6. 8% Shenxiong Glucose Injection,and then H_2O_2 was introduced to induce apoptosis in vitro. Cell viability was detected by MTS assay,morphological changes of apoptosis were observed by AO/EB fluorescence staining,apoptosis rate was detected by Annexin/PI method,cell expression profile was detected by gene chip technology,the mRNA of PIK3 CA,Bcl-2,Bax,caspase-3 and GAPDH were detected by qRT-PCR,the protein expression levels of PIK3 CA,AKT,P-AKT,Bcl-2,Bax and caspase-3 were detected by Western blot,and the contents of LDH and MDA were detected by kit. The results showed that Shenxiong Glucose Injection of different concentrations significantly increased the viability of H9 c2 cells treated with H_2O_2( P<0. 01),and reversed H_2O_2-induced apoptosis( P< 0. 01). The microarray experiments showed that 138 genes were altered in H9 c2 cells after treatment with Shenxiong Glucose Injection. The differential expression fold of PIK3 CA associated with PI3 K/AKT pathway was 3. 59. The results of qRT-PCR and Western blot showed that Shenxiong Glucose Injection could down-regulate the mRNA and protein expression levels of caspase-3( P<0. 01),up-regulate the mRNA and protein expression level of PIK3 CA and Bcl-2( P<0. 01),and up-regulate the phosphorylation levels of AKT( P<0. 01) in H_2O_2-treated H9 c2 cells. The protective effect of Shenxiong Glucose Injection on H_2O_2 cells injury was significantly inhibited by LY294002,a PI3 K/AKT pathway inhibitor. The results suggested that Shenxiong Glucose Injection may inhibit H_2O_2-induced H9 c2 cells apoptosis by regulating PI3 K/AKT signaling pathway.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Apoptosis
		                        			;
		                        		
		                        			Cell Line
		                        			;
		                        		
		                        			Chromones
		                        			;
		                        		
		                        			Drugs, Chinese Herbal
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Glucose
		                        			;
		                        		
		                        			Morpholines
		                        			;
		                        		
		                        			Phosphatidylinositol 3-Kinases
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Proto-Oncogene Proteins c-akt
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Signal Transduction
		                        			
		                        		
		                        	
3.Prostaglandin E receptors differentially regulate the output of proinflammatory cytokines in myometrial cells from term pregnant women.
You-Yi ZHANG ; Wei-Na LIU ; Xing-Ji YOU ; Hang GU ; Chen XU ; Xin NI
Acta Physiologica Sinica 2019;71(2):248-260
		                        		
		                        			
		                        			Prostaglandin (PG) E plays critical roles during pregnancy and parturition. Emerging evidence indicates that human labour is an inflammatory event. We sought to investigate the effect of PGE on the output of proinflammatory cytokines in cultured human uterine smooth muscle cells (HUSMCs) from term pregnant women and elucidate the role of subtypes of PGE receptors (EP, EP, EP and EP). After drug treatment and/or transfection of each receptor siRNA, the concentrations of inflammatory secreting factors in HUSMCs culture medium were detected by the corresponding ELISA kits. The results showed that, PGE increased interleukin 6 (IL-6) and tumor necrosis factor alpha (TNFα) output, decreased chemokine (c-x-c motif) ligand 8 (CXCL8) output in a dose-dependent manner, but had no effect on IL-1β and chemokine (c-c motif) ligand 2 (CCL-2) secretion of HUSMCs. EP/EP agonist 17-phenyl-trinor-PGE stimulated IL-6 and TNFα whilst suppressing IL-1β and CXCL8 output. The effects of 17-phenyl-trinor-PGE on IL-1β and CXCL8 secretion were remained whereas its effect on IL-6 and TNFα output did not occur in the cells with EP knockdown. The stimulatory effects of 17-phenyl-trinor-PGE on IL-6 and TNFα were remained whereas the inhibitory effects of 17-phenyl-trinor-PGE on IL-1β secretion was blocked in the cells with EP knockdown. Either of EP and EP agonists stimulated IL-1β and TNFα output, which was reversed by EP and EP siRNA, respectively. The inhibitors of phospholipase C (PLC) and protein kinase C (PKC) blocked EP/EP modulation of TNFα and CXCL8 output. PI3K inhibitor LY294002 and P38 inhibitor SB202190 blocked 17-phenyl-trinor-PGE-induced IL-1β and IL-6 output, respectively. The inhibitors of adenylyl cyclase and PKA prevented EP and EP stimulation of IL-1β and TNFα output, whereas PLC and PKC inhibitors blocked EP- and EP-induced TNFα output but not IL-1β output. Our data suggest that PGE receptors exhibit different effects on the output of various cytokines in myometrium, which can subtly modulate the inflammatory microenvironment in myometrium during pregnancy.
		                        		
		                        		
		                        		
		                        			Cells, Cultured
		                        			;
		                        		
		                        			Chromones
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Cytokines
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Female
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Imidazoles
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Inflammation
		                        			;
		                        		
		                        			Morpholines
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Myocytes, Smooth Muscle
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			Myometrium
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			Phosphatidylinositol 3-Kinases
		                        			;
		                        		
		                        			Pregnancy
		                        			;
		                        		
		                        			Pyridines
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Receptors, Prostaglandin E
		                        			;
		                        		
		                        			physiology
		                        			
		                        		
		                        	
4.Effect of Tongxinluo on Apoptosis of Rat Cardiac Microvascular Endothelial Cells.
Geng WEI ; Hong-rong LI ; Hong-li LIU ; Bing YAO ; Meng CHEN ; Jun-qing LIANG ; Zhen-hua JIA ; Yi-ling WU
Chinese Journal of Integrated Traditional and Western Medicine 2016;36(6):709-717
OBJECTIVETo observe the protective effects of Tongxinluo (TXL) on apoptosis of rat cardiac microvascular endothelial cells (RCMECs) resulting from homocysteine (Hcy) induced endoplasmic reticulum stress (ERS), and to determine the signaling pathway behind its protection.
METHODSPrimary cultured RCMECs were isolated from neonatal rats using tissue explant method. The morphology of RCMECs was observed using inverted microscope, identified and differentiated by CD31 immunofluorescence method. Selected were well growing 2nd-4th generations of RCMECs. The optimal action time was determined by detecting the expression of glucose regulated protein 78 (GRP78) using immunofluorescence method. In the next experiment RCMECs were divided into 5 groups, i.e., the blank control group, the Hcy induced group (Hcy 10 mmol/L, 10 h), the Hcy + TXL group (Hcy 10 mmol/L + TXL 400 µg/mL), the Hcy +LY294002 group (Hcy 10 mmol/L + LY294002 5 µmol/L, LY294002 as the inhibitor of PI3K), the Hcy + LY294002 + TXL group (Hcy 10 mmol/L + LY294002 5 µmol/L + TXL 400 µg/mL). The apoptosis rate of RCMECs was detected by flow cytometry. mRNA and protein expressions of GRP78, C/ EBP homologous protein (CHOP), and cysteinyl aspartate specific proteinase-12 (caspase12) were detected by real-time reverse transcription PCR (RT-PCR) and Western blot respectively. Expression levels of phosphorylation of phosphatidylinositol 3-kinase (P-PI3K), total phosphatidylinositol 3-kinase (T- P13K) , phosphorylation of kinase B (P-Akt) , and total kinase B (T-Akt) were detected by Western blot.
RESULTSTen hours Hcy action time was determined. Compared with the blank control group, the apoptosis rate was increased (22.77%), mRNA and protein expressions of GRP78, CHOP, and Caspase-12 were increased, protein expressions of P-PI3K and P-Akt,ratios of P-PI3K/T-PI3K and P-Akt/T-Akt were decreased in the Hcy induced group (P < 0.05, P < 0.01). Compared with the Hcy induced group, the apoptosis rate was decreased (10.17%), mRNA and protein expressions of GRP78, CHOP, and Caspase-12 were decreased, and expression levels of P-PI3K, P-Akt, P-PI3K/T-PI3K, and P-Akt/T-Akt were increased in the Hcy + TXL group (P < 0.05, P < 0.01). Compared with the Hcy + TXL group, the apoptosis rate was increased (17.9%), mRNA and protein expressions of GRP78, CHOP, and Caspase-12 were increased, expression levels of P-PI3K and P-Akt, ratios of P-PI3K/T-PI3K and P-Akt/T-Akt were decreased in the Hcy + TXL + LY294002 group (P < 0.05, P < 0.01).
CONCLUSIONTXL could inhibit the apoptosis of RCMECs resulting from Hcy-induced ERS and its mechanism might be associated with activating PI3K/Akt signaling pathway.
Animals ; Apoptosis ; drug effects ; Caspase 12 ; metabolism ; Cells, Cultured ; Chromones ; pharmacology ; Drugs, Chinese Herbal ; pharmacology ; Endoplasmic Reticulum Stress ; Endothelial Cells ; drug effects ; Morpholines ; pharmacology ; Myocardium ; cytology ; Phosphatidylinositol 3-Kinases ; metabolism ; Phosphorylation ; Proto-Oncogene Proteins c-akt ; metabolism ; Rats ; Signal Transduction ; Transcription Factor CHOP ; metabolism
5.Dual-Blocking of PI3K and mTOR Improves Chemotherapeutic Effects on SW620 Human Colorectal Cancer Stem Cells by Inducing Differentiation.
Min Jung KIM ; Jeong Eun KOO ; Gi Yeon HAN ; Buyun KIM ; Yoo Sun LEE ; Chiyoung AHN ; Chan Wha KIM
Journal of Korean Medical Science 2016;31(3):360-370
		                        		
		                        			
		                        			Cancer stem cells (CSCs) have tumor initiation, self-renewal, metastasis and chemo-resistance properties in various tumors including colorectal cancer. Targeting of CSCs may be essential to prevent relapse of tumors after chemotherapy. Phosphatidylinositol-3-kinase (PI3K) and mammalian target of rapamycin (mTOR) signals are central regulators of cell growth, proliferation, differentiation, and apoptosis. These pathways are related to colorectal tumorigenesis. This study focused on PI3K and mTOR pathways by inhibition which initiate differentiation of SW620 derived CSCs and investigated its effect on tumor progression. By using rapamycin, LY294002, and NVP-BEZ235, respectively, PI3K and mTOR signals were blocked independently or dually in colorectal CSCs. Colorectal CSCs gained their differentiation property and lost their stemness properties most significantly in dual-blocked CSCs. After treated with anti-cancer drug (paclitaxel) on the differentiated CSCs cell viability, self-renewal ability and differentiation status were analyzed. As a result dual-blocking group has most enhanced sensitivity for anti-cancer drug. Xenograft tumorigenesis assay by using immunodeficiency mice also shows that dual-inhibited group more effectively increased drug sensitivity and suppressed tumor growth compared to single-inhibited groups. Therefore it could have potent anti-cancer effects that dual-blocking of PI3K and mTOR induces differentiation and improves chemotherapeutic effects on SW620 human colorectal CSCs.
		                        		
		                        		
		                        		
		                        			AC133 Antigen/genetics/metabolism
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Antineoplastic Agents/pharmacology/therapeutic use
		                        			;
		                        		
		                        			Cell Differentiation/*drug effects
		                        			;
		                        		
		                        			Cell Line, Tumor
		                        			;
		                        		
		                        			Cell Survival/drug effects
		                        			;
		                        		
		                        			Chromones/pharmacology/therapeutic use
		                        			;
		                        		
		                        			Colorectal Neoplasms/drug therapy/metabolism/pathology
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Imidazoles/pharmacology/therapeutic use
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Mice, Inbred BALB C
		                        			;
		                        		
		                        			Mice, Nude
		                        			;
		                        		
		                        			Morpholines/pharmacology/therapeutic use
		                        			;
		                        		
		                        			Neoplastic Stem Cells/cytology/drug effects/metabolism
		                        			;
		                        		
		                        			Paclitaxel/pharmacology/therapeutic use
		                        			;
		                        		
		                        			Phosphatidylinositol 3-Kinases/*antagonists & inhibitors/metabolism
		                        			;
		                        		
		                        			Quinolines/pharmacology/therapeutic use
		                        			;
		                        		
		                        			SOXB1 Transcription Factors/genetics/metabolism
		                        			;
		                        		
		                        			Signal Transduction/*drug effects
		                        			;
		                        		
		                        			Sirolimus/pharmacology/therapeutic use
		                        			;
		                        		
		                        			TOR Serine-Threonine Kinases/*antagonists & inhibitors/metabolism
		                        			;
		                        		
		                        			Xenograft Model Antitumor Assays
		                        			
		                        		
		                        	
6.Effect of puerarin on PI3K/AKT pathway-mediated apoptosis of PASMCs.
Xiao-dan ZHANG ; Yan-nan YANG ; Shu-jing WANG ; Da-ling ZHU ; Li-wei WANG ; Jie-jing SHENG ; Sha-sha SONG
China Journal of Chinese Materia Medica 2015;40(15):3041-3046
		                        		
		                        			
		                        			To discuss the effect of puerarin (Pue) on the proliferation of hypoxia-induced pulmonary artery smooth muscle cells (PASMCs) and discuss whether the extracellular signal PI3K/AKT pathway was involved in the Pue-induced PASMC apoptosis. With the serum starvation group (SD group) as the control group, the MTT colorimetry method, Annexin V-FITC apoptosis detection kit and Western blot were used to detect Pue's effect on apoptosis of rat PASMCs. The protein immunoblot assay was used to detect whether PI3K/AKT pathway was involved in the inhibition of hypoxia-induced PASMC apoptosis process. The results show that under normoxic conditions, Pue had no effect on PASMC apoptosis; Under hypoxia conditions, Pue can inhibit PASMC apoptosis; Under normoxic and hypoxic conditions, Pue had no effect on TNF-α expression. Pue can reverse hypoxia-induced Bcl-2 (P <0.01), up-regulate it and down-regulated Bax (P <0.01). Under normoxic conditions, Pue had no effect on P-AKT expression. Both LY294002 and Pue can inhibit hypoxia-induced Bcl-2, up-regulation of P-AKT expression and down-regulation of Bax expression. Compared with the hypoxia + Pue group or the hypoxia + LY294002 group, the hypoxia + Pue + LY294002 group showed more significantly changes in Bcl-2, Bax, P-AKT expressions. The results show that, Pue can inhibit the hypoxic-induced PASMC apoptosis, which may be regulated through PI3K/AKT pathway.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Apoptosis
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Cells, Cultured
		                        			;
		                        		
		                        			Chromones
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Isoflavones
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Morpholines
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Myocytes, Smooth Muscle
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Phosphatidylinositol 3-Kinases
		                        			;
		                        		
		                        			physiology
		                        			;
		                        		
		                        			Proto-Oncogene Proteins c-akt
		                        			;
		                        		
		                        			physiology
		                        			;
		                        		
		                        			Pulmonary Artery
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Rats, Wistar
		                        			;
		                        		
		                        			Signal Transduction
		                        			;
		                        		
		                        			drug effects
		                        			
		                        		
		                        	
7.Liraglutide promotes proliferation and migration of cardiac microvascular endothelial cells through PI3K/Akt and MAPK/ERK signaling pathways.
Ying ZHANG ; Shun-Ying HU ; Tong YIN ; Feng TIAN ; Shan WANG ; Yingqian ZHANG ; YunDai CHEN
Journal of Southern Medical University 2015;35(9):1221-1226
OBJECTIVETo investigate the effect of liraglutide, an analogue of glucagon-like peptide-1, on the proliferation and migration of cardiac microvascular endothelial cells (CMECs) and explore the mechanism.
METHODSIn vitro cultured CMECs of SD rats were purified by differential adhesion method and identified immunocytochemically using CD31 antibody and factor VIII. MTT assay was performed to assess the proliferation of the first-generation cells exposed to different concentrations (0-1000 nm/L) of liraglutide. Western blotting was used to detect the activation of PI3K/Akt and MAPK/ERK signaling pathways. BrdU fluorescent labeling and scratch assay were performed to observe the proliferation and migration of CMECs following liraglutide treatment, and PI3K/Akt and MAPK/ERK pathway inhibitors LY294002 and PD98059, respectively, were used to further confirm the role of these signaling pathways in regulating the proliferation and migration of CMECs.
RESULTSImmunocytochemical staining demonstrated a proportion of double positive cells exceeding 95%. The cells exhibited a logarithmic growth 48 h after plating. Liraglutide exposure concentration-dependently promoted the proliferation of CMECs with the optimal concentration of 100 nmol/L (P<0.05). Liraglutide exposure of the cells for 24 h significantly increased the levels of intracellular phosphorylated Akt and ERK (P<0.05), but pretreatment of the cells with Akt and ERK signaling pathway inhibitors 1 h before liraglutide obviously reversed such effect (P<0.05). BrdU and scratch assay showed that 100 nmol/L liraglutide significantly promoted the proliferation and migration of CMECs (P<0.05), but such effects were obviously suppressed by Akt and ERK inhibitors (P<0.05).
CONCLUSIONLiraglutide promotes the proliferation and migration of CMECs in vitro via PI3K/Akt and MAPK/ERK signaling pathways.
Animals ; Cell Movement ; drug effects ; Cell Proliferation ; drug effects ; Cells, Cultured ; Chromones ; Endothelial Cells ; cytology ; drug effects ; Flavonoids ; Glucagon-Like Peptide 1 ; analogs & derivatives ; pharmacology ; Liraglutide ; MAP Kinase Signaling System ; Morpholines ; Myocardium ; cytology ; Phosphatidylinositol 3-Kinases ; metabolism ; Phosphorylation ; Rats ; Rats, Sprague-Dawley
8.Inhibitors of DNA-dependent protein kinase promote p53-independent apoptosis induced by 1, 4-benzoquinone in HL60 cells.
Wentao SONG ; Xiao XIAO ; Haiying CHEN ; Shengen CHEN ; Hong WANG ; Jie ZHU ; Yongyi BI
Chinese Journal of Industrial Hygiene and Occupational Diseases 2015;33(1):20-23
OBJECTIVETo investigate the impact of NU7026 and Wortmannin, inhibitors of DNA-dependent protein kinase (DNA-PK), in HL60 cells apoptosis induced by 1, 4-benzoquinone (1, 4-BQ).
METHODSHL60 cells were divided into three groups according to the exposures: the poisoned groups which were treated with 0, 5, 10, 25 and 50 µmol/L 1, 4-BQ for 24 h, respectively, the NU7026 groups which were preincubated with 10 µmol/L NU7026 for 1h prior to the 24h treatment of 0, 5, 10, 25 and 50 µmol/L 1, 4-BQ and the Wortmannin groups which were preincubated with 25 µmol/L Wortmannin for 1h prior to the 24 h treatment of 0, 5, 10, 25 and 50 µmol/L 1, 4-BQ. Then we detected the apoptosis via flowcytometry Annexin V-FITC/PI and the DNA Ladder, respectively. We also tested the expressions of Bax mRNA with Real-Time PCR in HL60 cells which were exposed to 10 µmol/L NU7026 for 24 h, 25 µmol/L Wortmannin 24 h, 10 µmol/L 1, 4-BQ 24 h, 10 µmol/L NU7026 1h+10 µmol/L 1, 4-BQ 24 h and 25 µmol/L Wortmannin 1 h+10 µmol/L 1, 4-BQ 24 h, as well as null (control). We also examed the expressions of p53 in HL60 cells with Western blot.
RESULTSAnnexin V-FITC/PI apoptosis tests suggested that apoptosis rates of NU7026+10 µmol/L 1, 4-BQ group and Wortmannin +10 µmol/L 1, 4-BQ were 17.6±1.19% and 15.2±1.22%, respectively. Both of results were higher than that of 10 µmol/L 1, 4-BQ group (6.3±1.04%); Apoptosis of NU7026+25 µmol/L 1, 4-BQ group was 46.2±3.55%, and Wortmannin +25 µmol/L 1, 4-BQ group 26.9±2.62%. Both of results were also higher than that of 25 µmol/L 1, 4-BQ group (14.1±1.54%); Apoptosis of NU7026+50 µmol/L 1, 4-BQ group (61.8±1.78%) was higher than that of 50 µmol/L 1, 4-BQ group (35.9±4.51%). The above results were all statistically significant (P < 0.05).
RESULTSof DNA-Ladder were basically consistent with those of Annexin V-FITC/PI apoptosis tests. In addition, both NU7026 and Wortmannin pretreatment elicited the higher expression of Bax mRNA in HL60 treated by 1, 4-benzoquinone with statistically significance (P < 0.05). However, p53 protein was not detected in HL60 cells as the western blot indicated.
CONCLUSIONInhibitors of DNA-PK, NU7026 and Wortmannin, promote p53-independent apoptosis induced by 1, 4-benzoquinone in HL60 cells.
Androstadienes ; pharmacology ; Apoptosis ; drug effects ; Benzoquinones ; toxicity ; Chromones ; pharmacology ; DNA-Activated Protein Kinase ; antagonists & inhibitors ; Flow Cytometry ; HL-60 Cells ; Humans ; Morpholines ; pharmacology ; RNA, Messenger ; Tumor Suppressor Protein p53
9.Osthole ameliorates glutamate-induced toxicity in HT22 cells via activating PI3K/Akt signaling pathway.
Xiaoyuan MAO ; Zhibin WANG ; Honghao ZHOU ; Zhaoqian LIU ; Yong ZHOU
Journal of Central South University(Medical Sciences) 2015;40(9):955-959
		                        		
		                        			OBJECTIVE:
		                        			To investigate the neuroprotective effects of osthole (OST) on glutamate-induced toxicity in hippocampal HT22 cells and to explore the correlation between the protection and phosphatidylinositol-3-kinase/protein kinase B (PI3K/Akt) signaling pathway.
		                        		
		                        			METHODS:
		                        			The cell injury model of HT22 was induced by glutamate and the cell viability was detected by MTS assay. The lactate dehydrogenase (LDH) release and the caspase-3 activity were determined by commercial kits. Western blot analysis was utilized to detect the protein levels of PI3K, Akt, p-PI3K and p-Akt. 
		                        		
		                        			RESULTS:
		                        			OST markedly improved the cell survival and decreased the LDH release in glutamate-treated HT22 cells in a dose-dependent manner. Furthermore, the levels of p-PI3K and p-Akt proteins were significantly increased in glutamate and OST-co-treated HT22 cells. The effect of OST on p-Akt phosphorylation in HT22 cells was attenuated in the presence of PI3K specific inhibitor (LY294002).
		                        		
		                        			CONCLUSION
		                        			OST protects HT22 cells from glutamate excitotoxicity through a mechanism involving the activation of PI3K/Akt signaling pathway.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Caspase 3
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Cell Line
		                        			;
		                        		
		                        			Cell Survival
		                        			;
		                        		
		                        			Chromones
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Coumarins
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Glutamic Acid
		                        			;
		                        		
		                        			adverse effects
		                        			;
		                        		
		                        			Hippocampus
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Morpholines
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Neuroprotective Agents
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Phosphatidylinositol 3-Kinases
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Phosphorylation
		                        			;
		                        		
		                        			Proto-Oncogene Proteins c-akt
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Signal Transduction
		                        			
		                        		
		                        	
10.Studies on effects of calycosin-7-O-β-D-glucoside on prim-O-glucosylcimifugin and cimifugin in vivo pharmacokinetics.
Xiao-Li ZHAO ; Ling LIU ; Liu-Qing DI ; Jun-Song LI ; An KANG
China Journal of Chinese Materia Medica 2014;39(23):4669-4674
		                        		
		                        			
		                        			Study on the effects of Astragali Radix main active flavone calycosin-7-O-β-D-glucoside on Saposhnikoviae Radix main active ingredients prim-O-glucosylcimifugin and cimifugin, a UPLC-MS/MS method for simultaneous determination of prim-O-glucosylcimifugin and cimifugin in rat plasma was established, and the comparative pharmacokinetics of prim-O-glucosylcimifugin and cimifugin after oral administration of prim-O-glucosylcimifugin and calycosin-7-O-β-D-glucoside-prim-O-glucosylcimifugin to rats were carried out, which might be conductive in exploring the rationality of Astragali Radix - Saposhnikoviae Radix herb couple. Twelve male SD rats were divided into two groups. Prim-O-glucosylcimifugin and cimifugin in rat plasma of different time points after oral administration of prim-O-glucosylcimifugin and calycosin-7-O-β-D-glucoside - prim-O-glucosylcimifugin to rats were determinated. And the main pharmacokinetic parameters were investigated using DAS 3. 2. 4. The established method was rapid, accurate and sensitive for simultaneous determination of prim-O-glucosylcimifugin and cimifugin in rat plasma. The analysis was performed on a Waters Acquity BEH C18 column (2.1 mm x 100 mm, 1.7 μm) with the mixture of acetonitrile and 0.1% formic acid/water as mobile phase, and the gradient elution at a flow rate of 0.3 mL x min(-1). The analytes were detected by tandem mass spectrometry with the electrospray ionization (ESI) source and in the multiple reaction monitoring (MRM) mode. Compared with prim-O-glucosylcimifugin group, the AUC(0-t)., and AUC(0-∞) of p-O-glucosylcimifugin as well as the C(max) of cimifugin significantly increased (P < 0.05) in calycosin-7-O-β-D-glucoside-prim-O-glucosylcimifugin group. Calycosin-7-O-β-D-glucoside could enhance the absorption of prim-O-glucosylcimifugin and cimifugin and improve the bioavailability, explaining preliminarily the rationality of Astragali Radix-Saposhnikoviae Radix herb couple.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Chromatography, High Pressure Liquid
		                        			;
		                        		
		                        			Chromones
		                        			;
		                        		
		                        			blood
		                        			;
		                        		
		                        			pharmacokinetics
		                        			;
		                        		
		                        			Drug Interactions
		                        			;
		                        		
		                        			Drugs, Chinese Herbal
		                        			;
		                        		
		                        			pharmacokinetics
		                        			;
		                        		
		                        			Glucosides
		                        			;
		                        		
		                        			blood
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Isoflavones
		                        			;
		                        		
		                        			blood
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Monosaccharides
		                        			;
		                        		
		                        			blood
		                        			;
		                        		
		                        			pharmacokinetics
		                        			;
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Rats, Sprague-Dawley
		                        			;
		                        		
		                        			Xanthenes
		                        			;
		                        		
		                        			blood
		                        			;
		                        		
		                        			pharmacokinetics
		                        			
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail