1.Recent advances in prostate cancer: WNT signaling, chromatin regulation, and transcriptional coregulators.
Sayuri TAKAHASHI ; Ichiro TAKADA
Asian Journal of Andrology 2023;25(2):158-165
Prostate cancer is one of the most common diseases in men worldwide. Surgery, radiation therapy, and hormonal therapy are effective treatments for early-stage prostate cancer. However, the development of castration-resistant prostate cancer has increased the mortality rate of prostate cancer. To develop novel drugs for castration-resistant prostate cancer, the molecular mechanisms of prostate cancer progression must be elucidated. Among the signaling pathways regulating prostate cancer development, recent studies have revealed the importance of noncanonical wingless-type MMTV integration site family (WNT) signaling pathways, mainly that involving WNT5A, in prostate cancer progression and metastasis; however, its role remains controversial. Moreover, chromatin remodelers such as the switch/sucrose nonfermentable (SWI/SNF) complex and chromodomain helicase DNA-binding proteins 1 also play important roles in prostate cancer progression through genome-wide gene expression changes. Here, we review the roles of noncanonical WNT signaling pathways, chromatin remodelers, and epigenetic enzymes in the development and progression of prostate cancer.
Male
;
Humans
;
Wnt Signaling Pathway
;
Chromatin
;
Prostatic Neoplasms, Castration-Resistant
;
Chromatin Assembly and Disassembly
2.Chromatin Remodeling Factor SMARCA5 is Essential for Hippocampal Memory Maintenance via Metabolic Pathways in Mice.
Yu QU ; Nan ZHOU ; Xia ZHANG ; Yan LI ; Xu-Feng XU
Neuroscience Bulletin 2023;39(7):1087-1104
Gene transcription and new protein synthesis regulated by epigenetics play integral roles in the formation of new memories. However, as an important part of epigenetics, the function of chromatin remodeling in learning and memory has been less studied. Here, we showed that SMARCA5 (SWI/SNF related, matrix-associated, actin-dependent regulator of chromatin, subfamily A, member 5), a critical chromatin remodeler, was responsible for hippocampus-dependent memory maintenance and neurogenesis. Using proteomics analysis, we found protein expression changes in the hippocampal dentate gyrus (DG) after the knockdown of SMARCA5 during contextual fear conditioning (CFC) memory maintenance in mice. Moreover, SMARCA5 was revealed to participate in CFC memory maintenance via modulating the proteins of metabolic pathways such as nucleoside diphosphate kinase-3 (NME3) and aminoacylase 1 (ACY1). This work is the first to describe the role of SMARCA5 in memory maintenance and to demonstrate the involvement of metabolic pathways regulated by SMARCA5 in learning and memory.
Mice
;
Animals
;
Memory
;
Chromatin Assembly and Disassembly
;
Hippocampus/metabolism*
;
Transcription Factors/metabolism*
;
Chromatin/metabolism*
;
Metabolic Networks and Pathways
3.The Tip60/Ep400 chromatin remodeling complex impacts basic cellular functions in cranial neural crest-derived tissue during early orofacial development.
Sebastian GEHLEN-BREITBACH ; Theresa SCHMID ; Franziska FRÖB ; Gabriele RODRIAN ; Matthias WEIDER ; Michael WEGNER ; Lina GÖLZ
International Journal of Oral Science 2023;15(1):16-16
The cranial neural crest plays a fundamental role in orofacial development and morphogenesis. Accordingly, mutations with impact on the cranial neural crest and its development lead to orofacial malformations such as cleft lip and palate. As a pluripotent and dynamic cell population, the cranial neural crest undergoes vast transcriptional and epigenomic alterations throughout the formation of facial structures pointing to an essential role of factors regulating chromatin state or transcription levels. Using CRISPR/Cas9-guided genome editing and conditional mutagenesis in the mouse, we here show that inactivation of Kat5 or Ep400 as the two essential enzymatic subunits of the Tip60/Ep400 chromatin remodeling complex severely affects carbohydrate and amino acid metabolism in cranial neural crest cells. The resulting decrease in protein synthesis, proliferation and survival leads to a drastic reduction of cranial neural crest cells early in fetal development and a loss of most facial structures in the absence of either protein. Following heterozygous loss of Kat5 in neural crest cells palatogenesis was impaired. These findings point to a decisive role of the Tip60/Ep400 chromatin remodeling complex in facial morphogenesis and lead us to conclude that the orofacial clefting observed in patients with heterozygous KAT5 missense mutations is at least in part due to disturbances in the cranial neural crest.
Animals
;
Mice
;
Chromatin Assembly and Disassembly
;
Cleft Lip/genetics*
;
Cleft Palate/genetics*
;
DNA Helicases/metabolism*
;
DNA-Binding Proteins
;
Neural Crest/metabolism*
;
Skull
;
Transcription Factors/metabolism*
4.Characterization of chromatin accessibility in psoriasis.
Zheng ZHANG ; Lu LIU ; Yanyun SHEN ; Ziyuan MENG ; Min CHEN ; Zhong LU ; Xuejun ZHANG
Frontiers of Medicine 2022;16(3):483-495
The pathological hallmarks of psoriasis involve alterations in T cell genes associated with transcriptional levels, which are determined by chromatin accessibility. However, to what extent these alterations in T cell transcriptional levels recapitulate the epigenetic features of psoriasis remains unknown. Here, we systematically profiled chromatin accessibility on Th1, Th2, Th1-17, Th17, and Treg cells and found that chromatin remodeling contributes significantly to the pathogenesis of the disease. The chromatin remodeling tendency of different subtypes of Th cells were relatively consistent. Next, we profiled chromatin accessibility and transcriptional dynamics on memory Th/Treg cells. In the memory Th cells, 803 increased and 545 decreased chromatin-accessible regions were identified. In the memory Treg cells, 713 increased and 1206 decreased chromatin-accessible regions were identified. A total of 54 and 53 genes were differentially expressed in the peaks associated with the memory Th and Treg cells. FOSL1, SPI1, ATF3, NFKB1, RUNX, ETV4, ERG, FLI1, and ETC1 were identified as regulators in the development of psoriasis. The transcriptional regulatory network showed that NFKB1 and RELA were highly connected and central to the network. NFKB1 regulated the genes of CCL3, CXCL2, and IL1RN. Our results provided candidate transcription factors and a foundational framework of the regulomes of the disease.
Chromatin/genetics*
;
Chromatin Assembly and Disassembly
;
Gene Regulatory Networks
;
Humans
;
Psoriasis/genetics*
;
T-Lymphocytes, Regulatory
5.A review on the genetic mechanism of chromatin remodeling in children with neurodevelopmental disorders.
Chinese Journal of Contemporary Pediatrics 2021;23(3):315-318
Neural development is regulated by both external environment and internal signals, and in addition to transcription factors, epigenetic modifications also play an important role. By focusing on the genetic mechanism of ATP-dependent chromatin remodeling in children with neurodevelopmental disorders, this article elaborates on the effect of four chromatin remodeling complexes on neurogenesis and the development and maturation of neurons and neuroglial cells and introduces the clinical research advances in neurodevelopmental disorders.
Child
;
Chromatin
;
Chromatin Assembly and Disassembly
;
Humans
;
Neurodevelopmental Disorders/genetics*
;
Neurogenesis
;
Transcription Factors/genetics*
6.Insights into epigenetic patterns in mammalian early embryos.
Ruimin XU ; Chong LI ; Xiaoyu LIU ; Shaorong GAO
Protein & Cell 2021;12(1):7-28
Mammalian fertilization begins with the fusion of two specialized gametes, followed by major epigenetic remodeling leading to the formation of a totipotent embryo. During the development of the pre-implantation embryo, precise reprogramming progress is a prerequisite for avoiding developmental defects or embryonic lethality, but the underlying molecular mechanisms remain elusive. For the past few years, unprecedented breakthroughs have been made in mapping the regulatory network of dynamic epigenomes during mammalian early embryo development, taking advantage of multiple advances and innovations in low-input genome-wide chromatin analysis technologies. The aim of this review is to highlight the most recent progress in understanding the mechanisms of epigenetic remodeling during early embryogenesis in mammals, including DNA methylation, histone modifications, chromatin accessibility and 3D chromatin organization.
Animals
;
Chromatin Assembly and Disassembly
;
DNA Methylation
;
DNA Transposable Elements
;
Embryo, Mammalian
;
Embryonic Development/genetics*
;
Epigenesis, Genetic
;
Epigenome
;
Female
;
Fertilization/physiology*
;
Gene Expression Regulation, Developmental
;
Histone Code
;
Histones/metabolism*
;
Male
;
Mice
;
Oocytes/metabolism*
;
Spermatozoa/metabolism*
7.A human circulating immune cell landscape in aging and COVID-19.
Yingfeng ZHENG ; Xiuxing LIU ; Wenqing LE ; Lihui XIE ; He LI ; Wen WEN ; Si WANG ; Shuai MA ; Zhaohao HUANG ; Jinguo YE ; Wen SHI ; Yanxia YE ; Zunpeng LIU ; Moshi SONG ; Weiqi ZHANG ; Jing-Dong J HAN ; Juan Carlos Izpisua BELMONTE ; Chuanle XIAO ; Jing QU ; Hongyang WANG ; Guang-Hui LIU ; Wenru SU
Protein & Cell 2020;11(10):740-770
Age-associated changes in immune cells have been linked to an increased risk for infection. However, a global and detailed characterization of the changes that human circulating immune cells undergo with age is lacking. Here, we combined scRNA-seq, mass cytometry and scATAC-seq to compare immune cell types in peripheral blood collected from young and old subjects and patients with COVID-19. We found that the immune cell landscape was reprogrammed with age and was characterized by T cell polarization from naive and memory cells to effector, cytotoxic, exhausted and regulatory cells, along with increased late natural killer cells, age-associated B cells, inflammatory monocytes and age-associated dendritic cells. In addition, the expression of genes, which were implicated in coronavirus susceptibility, was upregulated in a cell subtype-specific manner with age. Notably, COVID-19 promoted age-induced immune cell polarization and gene expression related to inflammation and cellular senescence. Therefore, these findings suggest that a dysregulated immune system and increased gene expression associated with SARS-CoV-2 susceptibility may at least partially account for COVID-19 vulnerability in the elderly.
Adult
;
Aged
;
Aged, 80 and over
;
Aging
;
genetics
;
immunology
;
Betacoronavirus
;
CD4-Positive T-Lymphocytes
;
metabolism
;
Cell Lineage
;
Chromatin Assembly and Disassembly
;
Coronavirus Infections
;
immunology
;
Cytokine Release Syndrome
;
etiology
;
immunology
;
Cytokines
;
biosynthesis
;
genetics
;
Disease Susceptibility
;
Flow Cytometry
;
methods
;
Gene Expression Profiling
;
Gene Expression Regulation, Developmental
;
Gene Rearrangement
;
Humans
;
Immune System
;
cytology
;
growth & development
;
immunology
;
Immunocompetence
;
genetics
;
Inflammation
;
genetics
;
immunology
;
Mass Spectrometry
;
methods
;
Middle Aged
;
Pandemics
;
Pneumonia, Viral
;
immunology
;
Sequence Analysis, RNA
;
Single-Cell Analysis
;
Transcriptome
;
Young Adult
8.Epigenetics of Male Fertility: Effects on Assisted Reproductive Techniques
Filippo GIACONE ; Rossella CANNARELLA ; Laura M MONGIOÌ ; Angela ALAMO ; Rosita A CONDORELLI ; Aldo E CALOGERO ; Sandro LA VIGNERA
The World Journal of Men's Health 2019;37(2):148-156
During the last decades the study of male infertility and the introduction of the assisted reproductive techniques (ARTs) has allowed to understand that normal sperm parameters do not always predict fertilization. Sperm genetic components could play an important role in the early stages of embryonic development. Based on these acquisitions, several epigenetic investigations have been developed on spermatozoa, with the aim of understanding the multifactorial etiology of male infertility and of showing whether embryonic development may be influenced by sperm epigenetic abnormalities. This article reviews the possible epigenetic modifications of spermatozoa and their effects on male fertility, embryonic development and ART outcome. It focuses mainly on sperm DNA methylation, chromatin remodeling, histone modifications and RNAs.
Chromatin Assembly and Disassembly
;
DNA Methylation
;
Embryonic Development
;
Epigenomics
;
Female
;
Fertility
;
Fertilization
;
Histone Code
;
Humans
;
Infertility
;
Infertility, Male
;
Male
;
Pregnancy
;
Reproductive Techniques, Assisted
;
RNA
;
Spermatozoa
9.Splitomicin, a SIRT1 Inhibitor, Enhances Hematopoietic Differentiation of Mouse Embryonic Stem Cells
Jeong A PARK ; Sangkyu PARK ; Woo Youn PARK ; Myung Kwan HAN ; Younghee LEE
International Journal of Stem Cells 2019;12(1):21-30
BACKGROUND AND OBJECTIVES: Embryonic stem (ES) cells have pluripotent ability to differentiate into multiple tissue lineages. SIRT1 is a class III histone deacetylase which modulates chromatin remodeling, gene silencing, cell survival, metabolism, and development. In this study, we examined the effects of SIRT1 inhibitors on the hematopoietic differentiation of mouse ES cells. METHODS AND RESULTS: Treatment with the SIRT1 inhibitors, nicotinamide and splitomicin, during the hematopoietic differentiation of ES cells enhanced the production of hematopoietic progenitors and slightly up-regulated erythroid and myeloid specific gene expression. Furthermore, treatment with splitomicin increased the percentage of erythroid and myeloid lineage cells. CONCLUSIONS: Application of the SIRT1 inhibitor splitomicin during ES cell differentiation to hematopoietic cells enhanced the yield of specific hematopoietic lineage cells from ES cells. This result suggests that SIRT1 is involved in the regulation of hematopoietic differentiation of specific lineages and that the modulation of the SIRT1 activity can be a strategy to enhance the efficiency of hematopoietic differentiation.
Animals
;
Cell Differentiation
;
Cell Survival
;
Chromatin Assembly and Disassembly
;
Gene Expression
;
Gene Silencing
;
Histone Deacetylases
;
Metabolism
;
Mice
;
Mouse Embryonic Stem Cells
;
Niacinamide
10.Angiotensin II and TGF-β1 Induce Alterations in Human Amniotic Fluid-Derived Mesenchymal Stem Cells Leading to Cardiomyogenic Differentiation Initiation
Monika GASIŪNIENĖ ; Gintautas PETKUS ; Dalius MATUZEVIČIUS ; Dalius NAVAKAUSKAS ; Rūta NAVAKAUSKIENĖ
International Journal of Stem Cells 2019;12(2):251-264
BACKGROUND AND OBJECTIVES: Human amniotic fluid-derived mesenchymal stem cells (AF-MSCs) may be a valuable source for cardiovascular tissue engineering and cell therapy. The aim of this study is to verify angiotensin II and transforming growth factor-beta 1 (TGF-β1) as potential cardiomyogenic differentiation inducers of AF-MSCs. METHODS AND RESULTS: AF-MSCs were obtained from amniocentesis samples from second-trimester pregnant women, isolated and characterized by the expression of cell surface markers (CD44, CD90, CD105 positive; CD34 negative) and pluripotency genes (OCT4, SOX2, NANOG, REX1). Cardiomyogenic differentiation was induced using different concentrations of angiotensin II and TGF-β1. Successful initiation of differentiation was confirmed by alterations in cell morphology, upregulation of cardiac genes-markers NKX2-5, TBX5, GATA4, MYH6, TNNT2, DES and main cardiac ion channels genes (sodium, calcium, potassium) as determined by RT-qPCR. Western blot and immunofluorescence analysis revealed the increased expression of Connexin43, the main component of gap junctions, and Nkx2.5, the early cardiac transcription factor. Induced AF-MSCs switched their phenotype towards more energetic and started utilizing oxidative phosphorylation more than glycolysis for energy production as assessed using Agilent Seahorse XF analyzer. The immune analysis of chromatin-modifying enzymes DNMT1, HDAC1/2 and Polycomb repressive complex 1 and 2 (PRC1/2) proteins BMI1, EZH2 and SUZ12 as well as of modified histones H3 and H4 indicated global chromatin remodeling during the induced differentiation. CONCLUSIONS: Angiotensin II and TGF-β1 are efficient cardiomyogenic inducers of human AF-MSCs; they initiate alterations at the gene and protein expression, metabolic and epigenetic levels in stem cells leading towards cardiomyocyte-like phenotype formation.
Amniocentesis
;
Amniotic Fluid
;
Angiotensin II
;
Angiotensins
;
Blotting, Western
;
Calcium
;
Cell Differentiation
;
Cell- and Tissue-Based Therapy
;
Chromatin
;
Chromatin Assembly and Disassembly
;
Connexin 43
;
Epigenomics
;
Female
;
Fluorescent Antibody Technique
;
Gap Junctions
;
Glycolysis
;
Histones
;
Humans
;
Ion Channels
;
Mesenchymal Stromal Cells
;
Muscle Cells
;
Oxidative Phosphorylation
;
Phenotype
;
Polycomb Repressive Complex 1
;
Pregnant Women
;
Smegmamorpha
;
Stem Cells
;
Tissue Engineering
;
Transcription Factors
;
Up-Regulation

Result Analysis
Print
Save
E-mail