1.Research on The Construction and Application of Multiple Fluorescence Amplification System for Three Kinds of Stains
Yi-Fan BAI ; He-Miao ZHAO ; Jing CHEN ; Hong-Di LIU ; Rui-Qin YANG ; Chong WANG
Progress in Biochemistry and Biophysics 2025;52(4):982-994
ObjectiveA multiplex amplification system was constructed based on the capillary electrophoresis platform for simultaneous detection of saliva, semen, and vaginal secretions using tissue-specific RNA markers. The aim of this study is to identify the tissue origin of suspicious body fluid stains found at crime scenes and determine whether the body fluid stains at the crime scene are one or several types among saliva, semen, and vaginal secretions. MethodsThirty saliva samples, forty semen samples, and forty vaginal secretion samples (half from 2015 and half from 2024) were collected from healthy adult volunteers. Through primer designing, system formulation, and PCR condition optimization, a multiplex fluorescent amplification system was constructed. The specificity, sensitivity, and detection ability for mixed samples of this system were investigated, and it was tested using real crime scene materials. In the primer design stage, to reduce the requirements for RNA template quality, the amplification products were set within 80-300 bp. In the system formulation stage, dominant and subordinate primers were mainly considered. By reducing the concentration of dominant primers and increasing that of subordinate primers, a capillary electrophoresis spectrum with an appropriate peak height ratio was finally obtained. Additionally, gradient experiments were designed to adjust the concentrations of PCR reagents and PCR amplification conditions, and multiple versions of DNA amplification enzymes were optimized to achieve the best experimental results. ResultsThrough statistical analysis, there was no significant difference in the capillary electrophoresis of the 3 types of body fluid samples from the two years (2015 and 2024), demonstrating that the sample preservation method in this study can preserve samples for a relatively long time. The composite amplification system constructed in this study exhibited high specificity for all 3 types of body fluid, with no cross-reactions between the markers of each type of body fluid. The minimum detection thresholds for the 3 types of body fluid reached 0.002 9, 0.001 5, and 0.42 mg/L, respectively. This system also had a high degree of discrimination for mixed samples, especially for semen-saliva mixtures, where each body fluid marker could still be successfully detected when the concentration ratio of semen to saliva was 100:1. Meanwhile, in the two actual cases presented in this article, the application of this composite amplification system performed outstandingly. ConclusionThe composite amplification detection system constructed in this study can achieve the correct screening of saliva, semen, and vaginal secretions, overcoming the problems such as low specificity and sensitivity of marker tests and unbalanced RFU values of each marker in previous studies. The specificity and sensitivity meet the practical work requirements, and the operation is simple. It provides an analytical and identification method for body fluid stains in actual case and is applicable to the identification of the tissue origin of biological evidence at crime scenes involving sexual assault, indecent assault, and other criminal acts. In the future, more types of body fluid markers will be screened to expand the types of body fluids detected by the system, and body fluid-specific cSNP and cInDel genetic markers will be introduced to infer the sources (individuals and types) of mixed and complex stains more accurately.
2.Impact of Antibody Immune Response and Immune Cells on Osteoporosis and Fractures
Kangkang OU ; Jiarui CHEN ; Jichong ZHU ; Weiming TAN ; Cheng WEI ; Guiyu LI ; Yingying QIN ; Chong LIU
Clinics in Orthopedic Surgery 2025;17(3):530-545
Background:
The immune system plays a critical role in the development and progression of osteoporosis and fractures. However, the causal relationships between antibody immune responses, immune cells, and these bone conditions remain unclear. This study aimed to explore these relationships using Mendelian randomization (MR) analysis.
Methods:
We collected complete blood count data from patients with fractures and healthy individuals and analyzed their differences. Then, we conducted a 2-sample, 2-step MR analysis to investigate the causal effects of antibody immune responses on osteoporosis and fractures, using inverse-variance weighted (IVW) as the primary method. We also explored whether immune cells mediate the pathway between antibodies and osteoporosis or fractures. Finally, we analyzed the functions and expression levels of key genes involved.
Results:
Overall, the fracture group exhibited increased white blood cell count, absolute neutrophil count, absolute monocyte count, platelet count, and their respective proportions, while absolute lymphocyte count, absolute eosinophil count, absolute basophil count, red blood cell count, and their proportions were decreased. We identified 44 causal relationships between antibodies and osteoporosis or fractures, with 7 supported by multiple MR methods, and 5 showing odds ratios significantly deviating from 1 in the IVW analysis. Epstein-Barr virus-related antibodies had a notable impact on osteoporosis and fractures. The human leukocyte antigen (HLA) gene family, particularly HLA-DPB1, emerged as a significant risk factor. However, immune cells were not found to mediate these effects.
Conclusions
This study elucidated the causal relationships between antibody immune responses, immune cells, and osteoporosis or fractures. The HLA gene family plays a crucial role in the interaction between antibodies and these bone conditions, with HLA-DPB1 identified as a key risk gene. Immune cells do not serve as mediators in this process. These findings provide valuable insights for future research.
3.Impact of Antibody Immune Response and Immune Cells on Osteoporosis and Fractures
Kangkang OU ; Jiarui CHEN ; Jichong ZHU ; Weiming TAN ; Cheng WEI ; Guiyu LI ; Yingying QIN ; Chong LIU
Clinics in Orthopedic Surgery 2025;17(3):530-545
Background:
The immune system plays a critical role in the development and progression of osteoporosis and fractures. However, the causal relationships between antibody immune responses, immune cells, and these bone conditions remain unclear. This study aimed to explore these relationships using Mendelian randomization (MR) analysis.
Methods:
We collected complete blood count data from patients with fractures and healthy individuals and analyzed their differences. Then, we conducted a 2-sample, 2-step MR analysis to investigate the causal effects of antibody immune responses on osteoporosis and fractures, using inverse-variance weighted (IVW) as the primary method. We also explored whether immune cells mediate the pathway between antibodies and osteoporosis or fractures. Finally, we analyzed the functions and expression levels of key genes involved.
Results:
Overall, the fracture group exhibited increased white blood cell count, absolute neutrophil count, absolute monocyte count, platelet count, and their respective proportions, while absolute lymphocyte count, absolute eosinophil count, absolute basophil count, red blood cell count, and their proportions were decreased. We identified 44 causal relationships between antibodies and osteoporosis or fractures, with 7 supported by multiple MR methods, and 5 showing odds ratios significantly deviating from 1 in the IVW analysis. Epstein-Barr virus-related antibodies had a notable impact on osteoporosis and fractures. The human leukocyte antigen (HLA) gene family, particularly HLA-DPB1, emerged as a significant risk factor. However, immune cells were not found to mediate these effects.
Conclusions
This study elucidated the causal relationships between antibody immune responses, immune cells, and osteoporosis or fractures. The HLA gene family plays a crucial role in the interaction between antibodies and these bone conditions, with HLA-DPB1 identified as a key risk gene. Immune cells do not serve as mediators in this process. These findings provide valuable insights for future research.
4.Impact of Antibody Immune Response and Immune Cells on Osteoporosis and Fractures
Kangkang OU ; Jiarui CHEN ; Jichong ZHU ; Weiming TAN ; Cheng WEI ; Guiyu LI ; Yingying QIN ; Chong LIU
Clinics in Orthopedic Surgery 2025;17(3):530-545
Background:
The immune system plays a critical role in the development and progression of osteoporosis and fractures. However, the causal relationships between antibody immune responses, immune cells, and these bone conditions remain unclear. This study aimed to explore these relationships using Mendelian randomization (MR) analysis.
Methods:
We collected complete blood count data from patients with fractures and healthy individuals and analyzed their differences. Then, we conducted a 2-sample, 2-step MR analysis to investigate the causal effects of antibody immune responses on osteoporosis and fractures, using inverse-variance weighted (IVW) as the primary method. We also explored whether immune cells mediate the pathway between antibodies and osteoporosis or fractures. Finally, we analyzed the functions and expression levels of key genes involved.
Results:
Overall, the fracture group exhibited increased white blood cell count, absolute neutrophil count, absolute monocyte count, platelet count, and their respective proportions, while absolute lymphocyte count, absolute eosinophil count, absolute basophil count, red blood cell count, and their proportions were decreased. We identified 44 causal relationships between antibodies and osteoporosis or fractures, with 7 supported by multiple MR methods, and 5 showing odds ratios significantly deviating from 1 in the IVW analysis. Epstein-Barr virus-related antibodies had a notable impact on osteoporosis and fractures. The human leukocyte antigen (HLA) gene family, particularly HLA-DPB1, emerged as a significant risk factor. However, immune cells were not found to mediate these effects.
Conclusions
This study elucidated the causal relationships between antibody immune responses, immune cells, and osteoporosis or fractures. The HLA gene family plays a crucial role in the interaction between antibodies and these bone conditions, with HLA-DPB1 identified as a key risk gene. Immune cells do not serve as mediators in this process. These findings provide valuable insights for future research.
5.Impact of Antibody Immune Response and Immune Cells on Osteoporosis and Fractures
Kangkang OU ; Jiarui CHEN ; Jichong ZHU ; Weiming TAN ; Cheng WEI ; Guiyu LI ; Yingying QIN ; Chong LIU
Clinics in Orthopedic Surgery 2025;17(3):530-545
Background:
The immune system plays a critical role in the development and progression of osteoporosis and fractures. However, the causal relationships between antibody immune responses, immune cells, and these bone conditions remain unclear. This study aimed to explore these relationships using Mendelian randomization (MR) analysis.
Methods:
We collected complete blood count data from patients with fractures and healthy individuals and analyzed their differences. Then, we conducted a 2-sample, 2-step MR analysis to investigate the causal effects of antibody immune responses on osteoporosis and fractures, using inverse-variance weighted (IVW) as the primary method. We also explored whether immune cells mediate the pathway between antibodies and osteoporosis or fractures. Finally, we analyzed the functions and expression levels of key genes involved.
Results:
Overall, the fracture group exhibited increased white blood cell count, absolute neutrophil count, absolute monocyte count, platelet count, and their respective proportions, while absolute lymphocyte count, absolute eosinophil count, absolute basophil count, red blood cell count, and their proportions were decreased. We identified 44 causal relationships between antibodies and osteoporosis or fractures, with 7 supported by multiple MR methods, and 5 showing odds ratios significantly deviating from 1 in the IVW analysis. Epstein-Barr virus-related antibodies had a notable impact on osteoporosis and fractures. The human leukocyte antigen (HLA) gene family, particularly HLA-DPB1, emerged as a significant risk factor. However, immune cells were not found to mediate these effects.
Conclusions
This study elucidated the causal relationships between antibody immune responses, immune cells, and osteoporosis or fractures. The HLA gene family plays a crucial role in the interaction between antibodies and these bone conditions, with HLA-DPB1 identified as a key risk gene. Immune cells do not serve as mediators in this process. These findings provide valuable insights for future research.
6.Therapeutic effects of the NLRP3 inflammasome inhibitor N14 in the treatment of gouty arthritis in mice
Xiao-lin JIANG ; Kai GUO ; Yu-wei HE ; Yi-ming CHEN ; Shan-shan DU ; Yu-qi JIANG ; Zhuo-yue LI ; Chang-gui LI ; Chong QIN
Acta Pharmaceutica Sinica 2024;59(5):1229-1237
Monosodium urate (MSU)-induced the gouty arthritis (GA) model was used to investigate the effect of Nod-like receptor protein 3 (NLRP3) inhibitor N14 in alleviating GA. Firstly, the effect of NLRP3 inhibitor N14 on the viability of mouse monocyte macrophage J774A.1 was examined by the cell counting kit-8 (CCK-8) assay. The expression of mature interleukin 1
7.Effect of parent-child alienation on epression among surface ship officers and soldiers:mediating role of resilience
Chong WEN ; Xiaoxiao SUN ; Beijing CHEN ; Wenjun XIANG ; Chenxuan JIN ; Jieying TAN ; Li MEI ; Fei XIE ; Qin DAI
Journal of Army Medical University 2024;46(14):1626-1632
Objective To investigate the effect of parent-child alienation on depression in surface ship officers and soldiers based on the theory of"diathesis-stress",and the mediating role of resilience between parent-child alienation and depression in them.Methods A cross-sectional study was conducted on 599 officers and soldiers from a surface ship unit.The participants were surveyed with inventory of alienation toward parents,connor-davidson resilience scale and patient health questionnaire-9 to obtain and analyze their demographic-military characteristics of their depression scores.The participants with depression scores ≥5 were recruited as the subjects,and Spearman correlation analysis was used to explore the correlation among parent-child alienation,resilience and depression.On the basis of hierarchical regression analysis,AMOS software was used to establish a structural equation modelling of intermediary effects.Results The depression score was 1(0,4)in the participants,and the depression scores of those with service length ≥11 years were comparatively higher than those with shorter length.Our results indicated that parent-child alienation was positive correlated with depression(r=0.451,P<0.001),while resilience was negatively correlated with depression and parent-child alienation(r=-0.412,-0.407,P<0.001).Regression analysis revealed that parent-child alienation had a direct positive predictive value for depression(β=0.574,P<0.001),and resilience showed a negative predictive value for depression(β=-0.211,P<0.01).Model analysis displayed that resilience had a significant mediating role in the effect of parent-child alienation on depression among these surface ship officers and soldiers,with an effect value of 0.088,and accounting for 15.86%of the total effect.Conclusion Parent-child alienation has a significant influence on depression among surface ship officers and soldiers,with resilience playing a partial mediating role.
8.A prospective cohort study of long-term fasting blood glucose variability and risk of mortality in patients with type 2 diabetes.
Yi Jia CHEN ; Yu QIN ; Hao YU ; Zheng ZHU ; Chong SHEN ; Yan LU ; Ting Ting CHENG ; Ning ZHANG ; Shu Jun GU ; Jin Yi ZHOU ; Ming WU ; Jian SU
Chinese Journal of Epidemiology 2023;44(7):1099-1105
Objective: To investigate the association between long-term fasting blood glucose (FPG) variability and all-cause mortality in patients with type 2 diabetes. Methods: A total of 7 174 type 2 diabetic patients included in National Basic Public Health Service Program in Changshu of Jiangsu Province were recruited as participants. Long-term glucose variability was assessed using standard deviation (SD), coefficient of variation (CV), average real variability (ARV), and variability independent of the mean (VIM) across FPG measurements at the more than three visits. Death information were mainly obtained from the death registry system in Jiangsu. Then Cox proportional hazards regression models were used to estimate the associations of four variability indicators and all-cause mortality's hazard ratios (HRs) and their 95%CIs. Results: Among 55 058.50 person-years of the follow-up, the mean follow-up time was 7.67 years, and 898 deaths occurred during the follow-up period. After adjustment, compared with T1 group, the Cox regression model showed that HRs of T3 group in SD, CV, ARV and VIM were 1.24 (95%CI: 1.03-1.49), 1.20 (95%CI: 1.01-1.43), 1.28 (95%CI: 1.07-1.55) and 1.20 (95%CI:1.01-1.41), respectively. HRs of per 1 SD higher SD, CV, ARV and VIM were 1.13 (95%CI: 1.06-1.21), 1.08 (95%CI: 1.01-1.15), 1.05 (95%CI: 1.00-1.12) and 1.09 (95%CI: 1.02-1.16) for all-cause mortality, respectively. In the stratified analysis, age, gender, hypoglycemic agent and insulin uses had no effect on the above associations (all P for interaction >0.05). Conclusion: Long-term FPG glycemic variability was positively associated with the risk of all-cause mortality in type 2 diabetes patients.
9.Diffuse midline glioma with H3K27 alteration in adults: a clinicopathological analysis.
Qin Yi YANG ; Ming Na LI ; Tian Yu CHEN ; Chong LIU ; Xiao LI ; Zhu Mei SHI ; Min Hong PAN
Chinese Journal of Pathology 2023;52(4):376-383
Objective: To investigate the clinicopathological characteristics, pathological diagnosis and prognosis of diffuse midline glioma (DMG) with H3K27 alteration in adults. Methods: Twenty cases of H3K27-altered adult DMG diagnosed in the First Affiliated Hospital of Nanjing Medical University were enrolled from 2017 to 2022. All cases were evaluated by clinical and imaging presentations, HE, immunohistochemical staining and molecular genetics; and the relevant literature was reviewed. Results: The ratio of male to female was 1∶1, and the median age was 53 years (range from 25 to 74 years); the tumors were located in the brainstem (3/20, 15%) and non-brainstem (17/20, 85%; three in thoracolumbar spinal cord and one in pineal region). The clinical manifestations were non-specific, mostly dizziness, headache, blurred vision, memory loss, low back pain, limb sensation and/or movement disorders, etc. Microscopically, the tumors showed infiltrative growth, with WHO grade 2 (3 cases), grade 3 (12 cases), and grade 4 (5 cases). The tumors showed astrocytoma-like and oligdendroglioma-like, pilocytic astrocytoma-like and epithelioid-like patterns. Immunohistochemically, the tumor cells were positive for GFAP, Olig2 and H3K27M, and H3K27me3 expression was variably lost. ATRX expression was lost in four cases, p53 was strongly positive in 11 cases. Ki-67 index was about 5%-70%. Molecular genetics showed p. k27m mutation in exon 1 of H3F3A gene in 20 cases; BRAF mutation in two cases: V600E and L597Q mutation in one case each. Follow up intervals ranged from 1 to 58 months, and the survival time for brainstem (6.0 months) and non-brainstem (30.4 months) tumors was significantly different (P<0.05). Conclusions: DMG with H3K27 alteration is uncommonly found in adults, mostly occurs in non-brainstem, and can present in adults of all ages. Owing to the wide histomorphologic features, mainly astrocytic differentiation, routine detection of H3K27me3 in midline glioma is recommended. Molecular testing should be performed on any suspected cases to avoid missed diagnosis. Concomitant BRAF L597Q mutation and PPM1D mutation are novel findings. The overall prognosis of this tumor is poor, with tumors located in the brainstem showing worse outcome.
Humans
;
Adult
;
Male
;
Female
;
Middle Aged
;
Aged
;
Histones/genetics*
;
Brain Neoplasms/pathology*
;
Proto-Oncogene Proteins B-raf/metabolism*
;
Glioma/pathology*
;
Astrocytoma/pathology*
;
Mutation
10.Application research and design strategy on smart responsive mesoporous silica anti-tumor nanodelivery systems
Biao LI ; Ying-chong CHEN ; Bao-de SHEN ; Wen-ting WU ; Qin ZHENG ; Peng-fei YUE
Acta Pharmaceutica Sinica 2023;58(3):494-505
Malignant tumors are major diseases that endanger human health. Due to their complex and variable microenvironment, most anti-tumor drugs cannot precisely reach the focal tissue and be released in a controlled manner. Intelligent responsive nano carriers have become a hot spot in the field of anti-tumor drug delivery systems. As an excellent nano material, mesoporous silica has the advantages of non-toxic, stable, adjustable pore volume and pore diameter, and easy functional modification on the surface. By virtue of its perceptive response to the tumor microenvironment or physiological changes, it can achieve the targeted drug release or controlled drug release of the drug delivery system in the tissue, making it an ideal carrier for intelligent response drug delivery system. In this paper, we review the design strategies and current research status of smart responsive anti-tumor drug delivery systems based on mesoporous silica, in order to provide a reference for the development of anti-tumor drug nanoformulations.

Result Analysis
Print
Save
E-mail