2.Imaging Findings of Complications of New Anticancer Drugs
Ji Sung JANG ; Hyo Jung PARK ; Chong Hyun SUH ; Sang Eun WON ; Eun Seong LEE ; Nari KIM ; Do-Wan LEE ; Kyung Won KIM
Korean Journal of Radiology 2025;26(2):156-168
The anticancer drugs have evolved significantly, spanning molecular targeted therapeutics (MTTs), immune checkpoint inhibitors (ICIs), chimeric antigen receptor T-cell (CAR-T) therapy, and antibody-drug conjugates (ADCs). Complications associated with these drugs vary widely based on their mechanisms of action. MTTs that target angiogenesis can often lead to complications related to ischemia or endothelial damage across various organs, whereas non-anti-angiogenic MTTs present unique complications derived from their specific pharmacological actions. ICIs are predominantly associated with immunerelated adverse events, such as pneumonitis, colitis, hepatitis, thyroid disorders, hypophysitis, and sarcoid-like reactions. CAR-T therapy causes unique and severe complications including cytokine release syndrome and immune effector cell-associated neurotoxicity syndrome. ADCs tend to cause complications associated with cytotoxic payloads. A comprehensive understanding of these drug-specific toxicities, particularly using medical imaging, is essential for providing optimal patient care. Based on this knowledge, radiologists can play a pivotal role in multidisciplinary teams. Therefore, radiologists must stay up-to-date on the imaging characteristics of these complications and the mechanisms underlying novel anticancer drugs.
3.Frequently Asked Questions on Imaging in Chimeric Antigen Receptor T-Cell Therapy Clinical Trials
Sang Eun WON ; Eun Sung LEE ; Chong Hyun SUH ; Sinae KIM ; Hyo Jung PARK ; Kyung Won KIM ; Jeffrey P. GUENETTE
Korean Journal of Radiology 2025;26(5):471-484
Clinical trials for chimeric antigen receptor (CAR) T-cell therapy are in the early stages but are expected to progress alongside new treatment approaches. This suggests that imaging will play an important role in monitoring disease progression, treatment response, and treatment-related side effects. There are, however, challenges that remain unresolved, regarding imaging in CAR T-cell therapy. We herein discuss the role of imaging, focusing on how tumor response evaluation varies according to cancer type and target antigens in CAR T-cell therapy. CAR T-cell therapy often produces rapid and significant responses, and imaging is vital for identifying side effects such as cytokine release syndrome and neurotoxicity. Radiologists should be aware of drug mechanisms, response assessments, and associated toxicities to effectively support these therapies. Additionally, this article highlights the importance of the Lugano criteria, which is essential for standardized assessment of treatment response, particularly in lymphoma therapies, and also explores other factors influencing imaging-based evaluation, including emerging methodologies and their potential to improve the accuracy and consistency of response assessments.
4.Nuclear Medicine Imaging in Differentiated Thyroid Cancer: Summary of the Korean Thyroid Association Guidelines 2024 from Nuclear Medicine Perspective, Part‑I
So Won OH ; Sohyun PARK ; Ari CHONG ; Keunyoung KIM ; Ji‑In BANG ; Youngduk SEO ; Chae Moon HONG ; Sang‑Woo LEE
Nuclear Medicine and Molecular Imaging 2025;59(1):1-7
Thyroid cancer, one of the most common endocrine tumors, generally has a favorable prognosis but remains a significant medical and societal concern due to its high incidence. Early diagnosis and treatment of differentiated thyroid cancer (DTC) significantly affect long-term outcomes, requiring the selection and application of appropriate initial treatments to improve prognosis and quality of life. Recent advances in technology and health information systems have enhanced our understanding of the molecular genetics of thyroid cancer, facilitating the identification of aggressive subgroups and enabling the accumulation of research on risk factors through big data. The Korean Thyroid Association (KTA) has revised the “KTA Guidelines on the Management of Differentiated Thyroid Cancers 2024” to incorporate these advances, which were developed by a multidisciplinary team and underwent extensive review and approval processes by various academic societies. This article summarizes the 2024 KTA guidelines for nuclear medicine imaging in patients with DTC, written by the Nuclear Medicine members of the KTA Guideline Committee, and covers 18 F-FDG PET/CT and radioiodine imaging with SPECT/CT in the management of DTC.
5.Radioactive Iodine Therapy in Differentiated Thyroid Cancer: Summary of the Korean Thyroid Association Guidelines 2024 from Nuclear Medicine Perspective, Part-II
So Won OH ; Sohyun PARK ; Ari CHONG ; Keunyoung KIM ; Ji‑In BANG ; Youngduk SEO ; Chae Moon HONG ; Sang‑Woo LEE
Nuclear Medicine and Molecular Imaging 2025;59(1):8-26
Thyroid cancer, one of the most common endocrine tumors, generally has a favorable prognosis but remains a significant medical and societal concern due to its high incidence. Early diagnosis and treatment of differentiated thyroid cancer (DTC) significantly affect long-term outcomes, requiring the selection and application of appropriate initial treatments to improve prognosis and quality of life. Recent advances in technology and health information systems have enhanced our understanding of the molecular genetics of thyroid cancer, facilitating the identification of aggressive subgroups and enabling the accumulation of research on risk factors through big data. The Korean Thyroid Association (KTA) has revised the “KTA Guidelines on the Management of Differentiated Thyroid Cancers 2024” to incorporate these advances, which were developed by a multidisciplinary team and underwent extensive review and approval processes by various academic societies.This article summarizes the 2024 KTA guidelines for radioactive iodine (RAI) therapy in patients with DTC, written by the Nuclear Medicine members of the KTA Guideline Committee, and covers RAI therapy as initial management of DTC and RAI therapy in advanced thyroid cancer.
7.Imaging Findings of Complications of New Anticancer Drugs
Ji Sung JANG ; Hyo Jung PARK ; Chong Hyun SUH ; Sang Eun WON ; Eun Seong LEE ; Nari KIM ; Do-Wan LEE ; Kyung Won KIM
Korean Journal of Radiology 2025;26(2):156-168
The anticancer drugs have evolved significantly, spanning molecular targeted therapeutics (MTTs), immune checkpoint inhibitors (ICIs), chimeric antigen receptor T-cell (CAR-T) therapy, and antibody-drug conjugates (ADCs). Complications associated with these drugs vary widely based on their mechanisms of action. MTTs that target angiogenesis can often lead to complications related to ischemia or endothelial damage across various organs, whereas non-anti-angiogenic MTTs present unique complications derived from their specific pharmacological actions. ICIs are predominantly associated with immunerelated adverse events, such as pneumonitis, colitis, hepatitis, thyroid disorders, hypophysitis, and sarcoid-like reactions. CAR-T therapy causes unique and severe complications including cytokine release syndrome and immune effector cell-associated neurotoxicity syndrome. ADCs tend to cause complications associated with cytotoxic payloads. A comprehensive understanding of these drug-specific toxicities, particularly using medical imaging, is essential for providing optimal patient care. Based on this knowledge, radiologists can play a pivotal role in multidisciplinary teams. Therefore, radiologists must stay up-to-date on the imaging characteristics of these complications and the mechanisms underlying novel anticancer drugs.
8.Frequently Asked Questions on Imaging in Chimeric Antigen Receptor T-Cell Therapy Clinical Trials
Sang Eun WON ; Eun Sung LEE ; Chong Hyun SUH ; Sinae KIM ; Hyo Jung PARK ; Kyung Won KIM ; Jeffrey P. GUENETTE
Korean Journal of Radiology 2025;26(5):471-484
Clinical trials for chimeric antigen receptor (CAR) T-cell therapy are in the early stages but are expected to progress alongside new treatment approaches. This suggests that imaging will play an important role in monitoring disease progression, treatment response, and treatment-related side effects. There are, however, challenges that remain unresolved, regarding imaging in CAR T-cell therapy. We herein discuss the role of imaging, focusing on how tumor response evaluation varies according to cancer type and target antigens in CAR T-cell therapy. CAR T-cell therapy often produces rapid and significant responses, and imaging is vital for identifying side effects such as cytokine release syndrome and neurotoxicity. Radiologists should be aware of drug mechanisms, response assessments, and associated toxicities to effectively support these therapies. Additionally, this article highlights the importance of the Lugano criteria, which is essential for standardized assessment of treatment response, particularly in lymphoma therapies, and also explores other factors influencing imaging-based evaluation, including emerging methodologies and their potential to improve the accuracy and consistency of response assessments.
9.Nuclear Medicine Imaging in Differentiated Thyroid Cancer: Summary of the Korean Thyroid Association Guidelines 2024 from Nuclear Medicine Perspective, Part‑I
So Won OH ; Sohyun PARK ; Ari CHONG ; Keunyoung KIM ; Ji‑In BANG ; Youngduk SEO ; Chae Moon HONG ; Sang‑Woo LEE
Nuclear Medicine and Molecular Imaging 2025;59(1):1-7
Thyroid cancer, one of the most common endocrine tumors, generally has a favorable prognosis but remains a significant medical and societal concern due to its high incidence. Early diagnosis and treatment of differentiated thyroid cancer (DTC) significantly affect long-term outcomes, requiring the selection and application of appropriate initial treatments to improve prognosis and quality of life. Recent advances in technology and health information systems have enhanced our understanding of the molecular genetics of thyroid cancer, facilitating the identification of aggressive subgroups and enabling the accumulation of research on risk factors through big data. The Korean Thyroid Association (KTA) has revised the “KTA Guidelines on the Management of Differentiated Thyroid Cancers 2024” to incorporate these advances, which were developed by a multidisciplinary team and underwent extensive review and approval processes by various academic societies. This article summarizes the 2024 KTA guidelines for nuclear medicine imaging in patients with DTC, written by the Nuclear Medicine members of the KTA Guideline Committee, and covers 18 F-FDG PET/CT and radioiodine imaging with SPECT/CT in the management of DTC.
10.Radioactive Iodine Therapy in Differentiated Thyroid Cancer: Summary of the Korean Thyroid Association Guidelines 2024 from Nuclear Medicine Perspective, Part-II
So Won OH ; Sohyun PARK ; Ari CHONG ; Keunyoung KIM ; Ji‑In BANG ; Youngduk SEO ; Chae Moon HONG ; Sang‑Woo LEE
Nuclear Medicine and Molecular Imaging 2025;59(1):8-26
Thyroid cancer, one of the most common endocrine tumors, generally has a favorable prognosis but remains a significant medical and societal concern due to its high incidence. Early diagnosis and treatment of differentiated thyroid cancer (DTC) significantly affect long-term outcomes, requiring the selection and application of appropriate initial treatments to improve prognosis and quality of life. Recent advances in technology and health information systems have enhanced our understanding of the molecular genetics of thyroid cancer, facilitating the identification of aggressive subgroups and enabling the accumulation of research on risk factors through big data. The Korean Thyroid Association (KTA) has revised the “KTA Guidelines on the Management of Differentiated Thyroid Cancers 2024” to incorporate these advances, which were developed by a multidisciplinary team and underwent extensive review and approval processes by various academic societies.This article summarizes the 2024 KTA guidelines for radioactive iodine (RAI) therapy in patients with DTC, written by the Nuclear Medicine members of the KTA Guideline Committee, and covers RAI therapy as initial management of DTC and RAI therapy in advanced thyroid cancer.

Result Analysis
Print
Save
E-mail