1.Changing Gadolinium-Based Contrast Agents to Prevent Recurrent Acute Adverse Drug Reactions: 6-Year Cohort Study Using Propensity Score Matching
Min Woo HAN ; Chong Hyun SUH ; Pyeong Hwa KIM ; Seonok KIM ; Ah Young KIM ; Kyung-Hyun DO ; Jeong Hyun LEE ; Dong-Il GWON ; Ah Young JUNG ; Choong Wook LEE
Korean Journal of Radiology 2025;26(2):204-204
2.Imaging Findings of Complications of New Anticancer Drugs
Ji Sung JANG ; Hyo Jung PARK ; Chong Hyun SUH ; Sang Eun WON ; Eun Seong LEE ; Nari KIM ; Do-Wan LEE ; Kyung Won KIM
Korean Journal of Radiology 2025;26(2):156-168
The anticancer drugs have evolved significantly, spanning molecular targeted therapeutics (MTTs), immune checkpoint inhibitors (ICIs), chimeric antigen receptor T-cell (CAR-T) therapy, and antibody-drug conjugates (ADCs). Complications associated with these drugs vary widely based on their mechanisms of action. MTTs that target angiogenesis can often lead to complications related to ischemia or endothelial damage across various organs, whereas non-anti-angiogenic MTTs present unique complications derived from their specific pharmacological actions. ICIs are predominantly associated with immunerelated adverse events, such as pneumonitis, colitis, hepatitis, thyroid disorders, hypophysitis, and sarcoid-like reactions. CAR-T therapy causes unique and severe complications including cytokine release syndrome and immune effector cell-associated neurotoxicity syndrome. ADCs tend to cause complications associated with cytotoxic payloads. A comprehensive understanding of these drug-specific toxicities, particularly using medical imaging, is essential for providing optimal patient care. Based on this knowledge, radiologists can play a pivotal role in multidisciplinary teams. Therefore, radiologists must stay up-to-date on the imaging characteristics of these complications and the mechanisms underlying novel anticancer drugs.
3.Frequently Asked Questions on Imaging in Chimeric Antigen Receptor T-Cell Therapy Clinical Trials
Sang Eun WON ; Eun Sung LEE ; Chong Hyun SUH ; Sinae KIM ; Hyo Jung PARK ; Kyung Won KIM ; Jeffrey P. GUENETTE
Korean Journal of Radiology 2025;26(5):471-484
Clinical trials for chimeric antigen receptor (CAR) T-cell therapy are in the early stages but are expected to progress alongside new treatment approaches. This suggests that imaging will play an important role in monitoring disease progression, treatment response, and treatment-related side effects. There are, however, challenges that remain unresolved, regarding imaging in CAR T-cell therapy. We herein discuss the role of imaging, focusing on how tumor response evaluation varies according to cancer type and target antigens in CAR T-cell therapy. CAR T-cell therapy often produces rapid and significant responses, and imaging is vital for identifying side effects such as cytokine release syndrome and neurotoxicity. Radiologists should be aware of drug mechanisms, response assessments, and associated toxicities to effectively support these therapies. Additionally, this article highlights the importance of the Lugano criteria, which is essential for standardized assessment of treatment response, particularly in lymphoma therapies, and also explores other factors influencing imaging-based evaluation, including emerging methodologies and their potential to improve the accuracy and consistency of response assessments.
4.Changing Gadolinium-Based Contrast Agents to Prevent Recurrent Acute Adverse Drug Reactions: 6-Year Cohort Study Using Propensity Score Matching
Min Woo HAN ; Chong Hyun SUH ; Pyeong Hwa KIM ; Seonok KIM ; Ah Young KIM ; Kyung-Hyun DO ; Jeong Hyun LEE ; Dong-Il GWON ; Ah Young JUNG ; Choong Wook LEE
Korean Journal of Radiology 2025;26(2):204-204
5.Imaging Findings of Complications of New Anticancer Drugs
Ji Sung JANG ; Hyo Jung PARK ; Chong Hyun SUH ; Sang Eun WON ; Eun Seong LEE ; Nari KIM ; Do-Wan LEE ; Kyung Won KIM
Korean Journal of Radiology 2025;26(2):156-168
The anticancer drugs have evolved significantly, spanning molecular targeted therapeutics (MTTs), immune checkpoint inhibitors (ICIs), chimeric antigen receptor T-cell (CAR-T) therapy, and antibody-drug conjugates (ADCs). Complications associated with these drugs vary widely based on their mechanisms of action. MTTs that target angiogenesis can often lead to complications related to ischemia or endothelial damage across various organs, whereas non-anti-angiogenic MTTs present unique complications derived from their specific pharmacological actions. ICIs are predominantly associated with immunerelated adverse events, such as pneumonitis, colitis, hepatitis, thyroid disorders, hypophysitis, and sarcoid-like reactions. CAR-T therapy causes unique and severe complications including cytokine release syndrome and immune effector cell-associated neurotoxicity syndrome. ADCs tend to cause complications associated with cytotoxic payloads. A comprehensive understanding of these drug-specific toxicities, particularly using medical imaging, is essential for providing optimal patient care. Based on this knowledge, radiologists can play a pivotal role in multidisciplinary teams. Therefore, radiologists must stay up-to-date on the imaging characteristics of these complications and the mechanisms underlying novel anticancer drugs.
6.Frequently Asked Questions on Imaging in Chimeric Antigen Receptor T-Cell Therapy Clinical Trials
Sang Eun WON ; Eun Sung LEE ; Chong Hyun SUH ; Sinae KIM ; Hyo Jung PARK ; Kyung Won KIM ; Jeffrey P. GUENETTE
Korean Journal of Radiology 2025;26(5):471-484
Clinical trials for chimeric antigen receptor (CAR) T-cell therapy are in the early stages but are expected to progress alongside new treatment approaches. This suggests that imaging will play an important role in monitoring disease progression, treatment response, and treatment-related side effects. There are, however, challenges that remain unresolved, regarding imaging in CAR T-cell therapy. We herein discuss the role of imaging, focusing on how tumor response evaluation varies according to cancer type and target antigens in CAR T-cell therapy. CAR T-cell therapy often produces rapid and significant responses, and imaging is vital for identifying side effects such as cytokine release syndrome and neurotoxicity. Radiologists should be aware of drug mechanisms, response assessments, and associated toxicities to effectively support these therapies. Additionally, this article highlights the importance of the Lugano criteria, which is essential for standardized assessment of treatment response, particularly in lymphoma therapies, and also explores other factors influencing imaging-based evaluation, including emerging methodologies and their potential to improve the accuracy and consistency of response assessments.
7.Changing Gadolinium-Based Contrast Agents to Prevent Recurrent Acute Adverse Drug Reactions: 6-Year Cohort Study Using Propensity Score Matching
Min Woo HAN ; Chong Hyun SUH ; Pyeong Hwa KIM ; Seonok KIM ; Ah Young KIM ; Kyung-Hyun DO ; Jeong Hyun LEE ; Dong-Il GWON ; Ah Young JUNG ; Choong Wook LEE
Korean Journal of Radiology 2025;26(2):204-204
8.Imaging Findings of Complications of New Anticancer Drugs
Ji Sung JANG ; Hyo Jung PARK ; Chong Hyun SUH ; Sang Eun WON ; Eun Seong LEE ; Nari KIM ; Do-Wan LEE ; Kyung Won KIM
Korean Journal of Radiology 2025;26(2):156-168
The anticancer drugs have evolved significantly, spanning molecular targeted therapeutics (MTTs), immune checkpoint inhibitors (ICIs), chimeric antigen receptor T-cell (CAR-T) therapy, and antibody-drug conjugates (ADCs). Complications associated with these drugs vary widely based on their mechanisms of action. MTTs that target angiogenesis can often lead to complications related to ischemia or endothelial damage across various organs, whereas non-anti-angiogenic MTTs present unique complications derived from their specific pharmacological actions. ICIs are predominantly associated with immunerelated adverse events, such as pneumonitis, colitis, hepatitis, thyroid disorders, hypophysitis, and sarcoid-like reactions. CAR-T therapy causes unique and severe complications including cytokine release syndrome and immune effector cell-associated neurotoxicity syndrome. ADCs tend to cause complications associated with cytotoxic payloads. A comprehensive understanding of these drug-specific toxicities, particularly using medical imaging, is essential for providing optimal patient care. Based on this knowledge, radiologists can play a pivotal role in multidisciplinary teams. Therefore, radiologists must stay up-to-date on the imaging characteristics of these complications and the mechanisms underlying novel anticancer drugs.
9.Frequently Asked Questions on Imaging in Chimeric Antigen Receptor T-Cell Therapy Clinical Trials
Sang Eun WON ; Eun Sung LEE ; Chong Hyun SUH ; Sinae KIM ; Hyo Jung PARK ; Kyung Won KIM ; Jeffrey P. GUENETTE
Korean Journal of Radiology 2025;26(5):471-484
Clinical trials for chimeric antigen receptor (CAR) T-cell therapy are in the early stages but are expected to progress alongside new treatment approaches. This suggests that imaging will play an important role in monitoring disease progression, treatment response, and treatment-related side effects. There are, however, challenges that remain unresolved, regarding imaging in CAR T-cell therapy. We herein discuss the role of imaging, focusing on how tumor response evaluation varies according to cancer type and target antigens in CAR T-cell therapy. CAR T-cell therapy often produces rapid and significant responses, and imaging is vital for identifying side effects such as cytokine release syndrome and neurotoxicity. Radiologists should be aware of drug mechanisms, response assessments, and associated toxicities to effectively support these therapies. Additionally, this article highlights the importance of the Lugano criteria, which is essential for standardized assessment of treatment response, particularly in lymphoma therapies, and also explores other factors influencing imaging-based evaluation, including emerging methodologies and their potential to improve the accuracy and consistency of response assessments.
10.Anti-Amyloid Imaging Abnormality in the Era of Anti-Amyloid Beta Monoclonal Antibodies:Recent Updates for the Radiologist
So Yeong JEONG ; Chong Hyun SUH ; Jae-Sung LIM ; Yangsean CHOI ; Ho Sung KIM ; Sang Joon KIM ; Jae-Hong LEE
Journal of the Korean Society of Radiology 2025;86(1):17-33
Lecanemab and donanemab have received full U.S. Food and Drug Administration (FDA) approval, and subsequently, lecanemab has been approved by the Korean FDA and it has recently entered commercial use in Korea. This has increased interest in anti-amyloid immunotherapy for Alzheimer’s disease. Anti-amyloid immunotherapy has shown potential to modify the progression of the disease by specifically binding to amyloid β, a key pathological product in Alzheimer’s disease, and eliminating accumulated amyloid plaques in the brain. However, this treatment can be accompanied by a side-effect, amyloid-related imaging abnormalities (ARIA), which requires periodic monitoring by MRI. It is crucial to detect ARIA and accurately assess the severity by radiology. The role of the radiologist is important in this context, requiring proficiency in basic knowledge of ARIA, and in diagnosing/evaluating ARIA. This review aims to comprehensively cover aspects of ARIA, including its definition, pathophysiology, incidence, risk factors, assessment of severity by radiology, differential diagnosis, and management.

Result Analysis
Print
Save
E-mail