1.Research progress in mechanism of puerarin in treating vascular dementia.
Da-He QI ; Hua MA ; Yuan-Yuan CHEN ; Ke-Xin WANG ; Meng-Meng DING ; Yun-Long HAO ; Ye GUO ; Ling-Bo KONG
China Journal of Chinese Materia Medica 2023;48(22):5993-6002
Vascular dementia(VD) is a condition of cognitive impairment due to acute and chronic cerebral hypoperfusion. The available therapies for VD mainly focus on mitigating cerebral ischemia, improving cognitive function, and controlling mental behavior. Achievements have been made in the basic and clinical research on the treatment of VD with traditional Chinese medicine(TCM) active components, including Ginkgo leaf extract, puerarin, epimedium, tanshinone, and ginsenoside. Most of these components have anti-inflammatory, anti-apoptotic, anti-oxidant, and neuroprotective effects, and puerarin demonstrates excellent performance in mitigating cholinergic nervous system disorders and improving synaptic plasticity. Puerarin, ginkgetin, and epimedium are all flavonoids, while tanshinone is a diterpenoid. Puerariae Lobatae Radix, pungent in nature, can induce clear Yang to reach the cerebral orifices and has the wind medicine functions of ascending, dispersing, moving, and scurrying. Puerariae Lobatae Radix entering collaterals will dredge blood vessels to promote blood flow, and that entering the sweat pore will open the mind, which is in line with the TCM pathogenesis characteristics of VD. This study reviews the progress in the mechanism of puerarin, the main active component of Puerariae Lobatae Radix, in treating VD. Puerarin can ameliorate cholinergic nervous system disorders, reduce excitotoxicity, anti-inflammation, inhibit apoptosis, alleviate oxidative stress injury, enhance synaptic plasticity, up-regulate neuroprotective factor expression, promote cerebral circulation metabolism, and mitigate Aβ injury. The pathways of action include activating nuclear factor erythroid 2-related factor 2(Nrf2)/antioxidant response element(ARE), vascular endothelial growth factor(VEGF), extracellular regulated protein kinases(ERK), phosphatidylinositol-3-kinase(PI3K)/protein kinase B(Akt), Janus-activating kinase 2(JAK2)/signal transducer and activator of transcription 3(STAT3), AMP-activated protein kinase(AMPK), as well as inhibiting the tumor necrosis factor α(TNF-α), transient receptor potential melastatin 2(TRPM2)/N-methyl-D-aspartate receptor(NMDAR), p38 mitogen-activated protein kinase(p38 MAPK), Toll-like receptor 4(TLR4)/nuclear factor-kappaB(NF-κB), early growth response 1(Egr-1), and matrix metalloproteinase 9(MMP-9). By reviewing the papers about the treatment of VD by puerarin published by CNKI, Wanfang, VIP, PubMed, and Web of Science in the last 10 years, this study aims to support the treatment and drug development for VD.
Humans
;
Dementia, Vascular/drug therapy*
;
Vascular Endothelial Growth Factor A
;
NF-kappa B/metabolism*
;
Antioxidants
;
Brain Ischemia
;
Cholinergic Agents
2.Basal Forebrain Cholinergic Innervation Induces Depression-Like Behaviors Through Ventral Subiculum Hyperactivation.
Nana YU ; Huina SONG ; Guangpin CHU ; Xu ZHAN ; Bo LIU ; Yangling MU ; Jian-Zhi WANG ; Yisheng LU
Neuroscience Bulletin 2023;39(4):617-630
Malfunction of the ventral subiculum (vSub), the main subregion controlling the output connections from the hippocampus, is associated with major depressive disorder (MDD). Although the vSub receives cholinergic innervation from the medial septum and diagonal band of Broca (MSDB), whether and how the MSDB-to-vSub cholinergic circuit is involved in MDD is elusive. Here, we found that chronic unpredictable mild stress (CUMS) induced depression-like behaviors with hyperactivation of vSub neurons, measured by c-fos staining and whole-cell patch-clamp recording. By retrograde and anterograde tracing, we confirmed the dense MSDB cholinergic innervation of the vSub. In addition, transient restraint stress in CUMS increased the level of ACh in the vSub. Furthermore, chemogenetic stimulation of this MSDB-vSub innervation in ChAT-Cre mice induced hyperactivation of vSub pyramidal neurons along with depression-like behaviors; and local infusion of atropine, a muscarinic receptor antagonist, into the vSub attenuated the depression-like behaviors induced by chemogenetic stimulation of this pathway and CUMS. Together, these findings suggest that activating the MSDB-vSub cholinergic pathway induces hyperactivation of vSub pyramidal neurons and depression-like behaviors, revealing a novel circuit underlying vSub pyramidal neuronal hyperactivation and its associated depression.
Rats
;
Mice
;
Animals
;
Rats, Sprague-Dawley
;
Depressive Disorder, Major/metabolism*
;
Basal Forebrain
;
Depression
;
Hippocampus/metabolism*
;
Cholinergic Agents
3.Biphasic Cholinergic Modulation of Reverberatory Activity in Neuronal Networks.
Xiao-Wei LI ; Yi REN ; Dong-Qing SHI ; Lei QI ; Fang XU ; Yanyang XIAO ; Pak-Ming LAU ; Guo-Qiang BI
Neuroscience Bulletin 2023;39(5):731-744
Acetylcholine (ACh) is an important neuromodulator in various cognitive functions. However, it is unclear how ACh influences neural circuit dynamics by altering cellular properties. Here, we investigated how ACh influences reverberatory activity in cultured neuronal networks. We found that ACh suppressed the occurrence of evoked reverberation at low to moderate doses, but to a much lesser extent at high doses. Moreover, high doses of ACh caused a longer duration of evoked reverberation, and a higher occurrence of spontaneous activity. With whole-cell recording from single neurons, we found that ACh inhibited excitatory postsynaptic currents (EPSCs) while elevating neuronal firing in a dose-dependent manner. Furthermore, all ACh-induced cellular and network changes were blocked by muscarinic, but not nicotinic receptor antagonists. With computational modeling, we found that simulated changes in EPSCs and the excitability of single cells mimicking the effects of ACh indeed modulated the evoked network reverberation similar to experimental observations. Thus, ACh modulates network dynamics in a biphasic fashion, probably by inhibiting excitatory synaptic transmission and facilitating neuronal excitability through muscarinic signaling pathways.
Cholinergic Agents/pharmacology*
;
Acetylcholine/metabolism*
;
Neurons/metabolism*
;
Synaptic Transmission/physiology*
4.A case of intramuscular injection of methomyl poisoning.
Guo Hao LIAO ; Bin CHENG ; Hong Yu YU ; Kai Yang WANG ; Wei Juan HU ; Jian CHEN
Chinese Journal of Industrial Hygiene and Occupational Diseases 2022;40(11):865-866
Methomyl is a carbamate insecticide widely used in pesticides. Most of the poisoning methods are through digestive tract, respiratory tract and skin contact. At present, there is no report of poisoning caused by intramuscular injection. A case of poisoning caused by intramuscular injection of methomyl was analyzed retrospectively. About 4 minutes later, cholinergic crisis and central inhibition occurred. Venovenous-Extracorporeal Membrane Oxygenation (VV-ECMO) and atropine were given quickly. Finally, the patient was successfully rescued and had a good prognosis. After intramuscular injection of methomyl, cholinergic crisis can occur rapidly, and the onset rate is significantly faster than that of digestive tract, respiratory tract and skin contact.
Humans
;
Retrospective Studies
;
Methomyl
;
Insecticides
;
Pesticides
;
Cholinergic Agents
6.A Report of Rabbit Syndrome Who Benefited from Sigma 1 Agonist Fluvoxamine
Yakup ALBAYRAK ; Murat BEYAZYÜZ ; Ozlem ABBAK ; Ece ALTINDAĞ
Clinical Psychopharmacology and Neuroscience 2019;17(1):134-138
Rabbit Syndrome is an uncommon side effect of antipsychotic treatment. Although it is usually associated with typical antipsychotics, it can also be related to atypical antipsychotics. Anticholinergics are the most accepted treatment approach in treating Rabbit Syndrome. Fluvoxamine is a member of selective serotonin reuptake inhibitors and it is a potent agonist of sigma 1 receptors. In this article, we report a Rabbit Syndrome case who has benefited from fluvoxamine, in terms of both depressive disorder and Rabbit Syndrome; and present the data on the effects of sigma 1 agonist fluvoxamine on numerous movement disorders.
Antipsychotic Agents
;
Cholinergic Antagonists
;
Depressive Disorder
;
Fluvoxamine
;
Movement Disorders
;
Receptors, sigma
;
Serotonin Uptake Inhibitors
7.Neuroimmune interactions and kidney disease
Sho HASEGAWA ; Tsuyoshi INOUE ; Reiko INAGI
Kidney Research and Clinical Practice 2019;38(3):282-294
The autonomic nervous system plays critical roles in maintaining homeostasis in humans, directly regulating inflammation by altering the activity of the immune system. The cholinergic anti-inflammatory pathway is a well-studied neuroimmune interaction involving the vagus nerve. CD4-positive T cells expressing β2 adrenergic receptors and macrophages expressing the alpha 7 subunit of the nicotinic acetylcholine receptor in the spleen receive neurotransmitters such as norepinephrine and acetylcholine and are key mediators of the cholinergic anti-inflammatory pathway. Recent studies have demonstrated that vagus nerve stimulation, ultrasound, and restraint stress elicit protective effects against renal ischemia-reperfusion injury. These protective effects are induced primarily via activation of the cholinergic anti-inflammatory pathway. In addition to these immunological roles, nervous systems are directly related to homeostasis of renal physiology. Whole-kidney three-dimensional visualization using the tissue clearing technique CUBIC (clear, unobstructed brain/body imaging cocktails and computational analysis) has illustrated that renal sympathetic nerves are primarily distributed around arteries in the kidneys and denervated after ischemia-reperfusion injury. In contrast, artificial renal sympathetic denervation has a protective effect against kidney disease progression in murine models. Further studies are needed to elucidate how neural networks are involved in progression of kidney disease.
Acetylcholine
;
Arteries
;
Autonomic Nervous System
;
Cholinergic Neurons
;
Homeostasis
;
Humans
;
Immune System
;
Inflammation
;
Kidney Diseases
;
Kidney
;
Macrophages
;
Nervous System
;
Neurotransmitter Agents
;
Norepinephrine
;
Optogenetics
;
Physiology
;
Receptors, Adrenergic
;
Receptors, Nicotinic
;
Reperfusion Injury
;
Spleen
;
Sympathectomy
;
Sympathetic Nervous System
;
T-Lymphocytes
;
Ultrasonography
;
Vagus Nerve
;
Vagus Nerve Stimulation
8.Pharmacological Modulation of Vagal Nerve Activity in Cardiovascular Diseases.
Longzhu LIU ; Ming ZHAO ; Xiaojiang YU ; Weijin ZANG
Neuroscience Bulletin 2019;35(1):156-166
Cardiovascular diseases are life-threatening illnesses with high morbidity and mortality. Suppressed vagal (parasympathetic) activity and increased sympathetic activity are involved in these diseases. Currently, pharmacological interventions primarily aim to inhibit over-excitation of sympathetic nerves, while vagal modulation has been largely neglected. Many studies have demonstrated that increased vagal activity reduces cardiovascular risk factors in both animal models and human patients. Therefore, the improvement of vagal activity may be an alternate approach for the treatment of cardiovascular diseases. However, drugs used for vagus nerve activation in cardiovascular diseases are limited in the clinic. In this review, we provide an overview of the potential drug targets for modulating vagal nerve activation, including muscarinic, and β-adrenergic receptors. In addition, vagomimetic drugs (such as choline, acetylcholine, and pyridostigmine) and the mechanism underlying their cardiovascular protective effects are also discussed.
Acetylcholine
;
pharmacology
;
Animals
;
Cardiovascular Diseases
;
drug therapy
;
Cholinergic Agents
;
therapeutic use
;
Humans
;
Receptors, Muscarinic
;
drug effects
;
Sympathetic Nervous System
;
drug effects
;
physiopathology
;
Vagus Nerve
;
drug effects
;
physiopathology
9.Korean Treatment Guideline on Pharmacotherapy of Co-existing Symptoms and Antipsychotics-related Side Effects in Patients with Schizophrenia
Je Yeon YUN ; Jung Suk LEE ; Shi Hyun KANG ; Beomwoo NAM ; Seung Jae LEE ; Seung Hwan LEE ; Joonho CHOI ; Chan Hyung KIM ; Young Chul CHUNG
Korean Journal of Schizophrenia Research 2019;22(2):21-33
OBJECTIVES: The current study covers a secondary revision of the guidelines for the pharmacotherapy of schizophrenia issued by the Korean Medication Algorithm for Schizophrenia (KMAP-SCZ) 2001, specifically for co-existing symptoms and antipsychotics-related side-effects in schizophrenia patients. METHODS: An expert consensus regarding the strategies of pharmacotherapy for positive symptoms of schizophrenia, co-existing symptoms of schizophrenia, and side-effect of antipsychotics in patients with schizophrenia was retrieved by responses obtained using a 30-item questionnaire. RESULTS: For the co-existing symptoms, agitation could be treated with oral or intramuscular injection of benzodiazepine or antipsychotics; depressive symptoms with atypical antipsychotics and adjunctive use of antidepressant; obsessive-compulsive symptoms with selective serotonin reuptake inhibitors and antipsychotics other than clozapine and olanzapine; negative symptoms with atypical antipsychotics or antidepressants; higher risk of suicide with clozapine; comorbid substance abuse with use of naltrexone or bupropion/ varenicline, respectively. For the antipsychotics-related side effects, anticholinergics (extrapyramidal symptom), propranolol and benzodiazepine (akathisia), topiramate or metformin (weight gain), change of antipsychotics to aripiprazole (hyperprolactinemia and prolonged QTc) or clozapine (tardive dyskinesia) could be used. CONCLUSION: Updated pharmacotherapy strategies for co-existing symptoms and antipsychotics-related side effects in schizophrenia patients as presented in KMAP-SCZ 2019 could help effective clinical decision making of psychiatrists as a preferable option.
Antidepressive Agents
;
Antipsychotic Agents
;
Aripiprazole
;
Benzodiazepines
;
Cholinergic Antagonists
;
Clinical Decision-Making
;
Clozapine
;
Consensus
;
Depression
;
Dihydroergotamine
;
Drug Therapy
;
Humans
;
Injections, Intramuscular
;
Metformin
;
Naltrexone
;
Propranolol
;
Psychiatry
;
Schizophrenia
;
Serotonin Uptake Inhibitors
;
Substance-Related Disorders
;
Suicide
;
Varenicline
10.Pharmacotherapy for chronic obstructive pulmonary disease
Journal of the Korean Medical Association 2019;62(5):277-282
Appropriate pharmacologic therapy can reduce symptoms and risk and severity of exacerbations, as well as improve the health status and exercise tolerance of patients with chronic obstructive pulmonary disease. The most important medications for treating chronic obstructive pulmonary disease are inhaled bronchodilators including beta2-agonist and anticholinergics. Inhaled corticosteroids as anti-inflammatory drug should be considered in certain patients with caution considering risk and benefit. The choice within each class depends on the availability of medication and the patient's responses and preferences. Each treatment regimen needs to be individualized as the relationship between severity of symptoms, airflow limitation and severity of exacerbation can differ between patients.
Adrenal Cortex Hormones
;
Bronchodilator Agents
;
Cholinergic Antagonists
;
Drug Therapy
;
Exercise Tolerance
;
Humans
;
Pulmonary Disease, Chronic Obstructive
;
Respiratory Therapy

Result Analysis
Print
Save
E-mail