1.Icariin Improves Cognitive Impairment after Traumatic Brain Injury by Enhancing Hippocampal Acetylation.
Zi-Gang ZHANG ; Xin WANG ; Jin-Hai ZAI ; Cai-Hua SUN ; Bing-Chun YAN
Chinese journal of integrative medicine 2018;24(5):366-371
OBJECTIVETo examine the effect of icariin (ICA) on the cognitive impairment induced by traumatic brain injury (TBI) in mice and the underlying mechanisms related to changes in hippocampal acetylation level.
METHODSThe modifified free-fall method was used to establish the TBI mouse model. Mice with post-TBI cognitive impairment were randomly divided into 3 groups using the randomised block method (n=7): TBI (vehicle-treated), low-dose (75 mg/kg) and high-dose (150 mg/kg) of ICA groups. An additional sham-operated group (vehicle-treated) was employed. The vehicle or ICA was administrated by gavage for 28 consecutive days. The Morris water maze (MWM) test was conducted. Acetylcholine (ACh) content, mRNA and protein levels of choline acetyltransferase (ChAT), and protein levels of acetylated H3 (Ac-H3) and Ac-H4 were detected in the hippocampus.
RESULTSCompared with the sham-operated group, the MWM performance, hippocampal ACh content, mRNA and protein levels of ChAT, and protein levels of Ac-H3 and Ac-H4 were signifificantly decreased in the TBI group (P<0.05). High-dose of ICA signifificantly ameliorated the TBI-induced weak MWM performance, increased hippocampal ACh content, and mRNA and protein levels of ChAT, as well as Ac-H3 protein level compared with the TBI group (P<0.05).
CONCLUSIONICA improved post-TBI cognitive impairment in mice by enhancing hippocampal acetylation, which improved hippocampal cholinergic function and ultimately improved cognition.
Acetylation ; Acetylcholine ; metabolism ; Animals ; Brain Injuries, Traumatic ; complications ; Choline O-Acetyltransferase ; genetics ; metabolism ; Cognitive Dysfunction ; drug therapy ; etiology ; Flavonoids ; chemistry ; pharmacology ; therapeutic use ; Hippocampus ; pathology ; Histones ; metabolism ; Homeostasis ; drug effects ; Male ; Maze Learning ; drug effects ; Mice ; RNA, Messenger ; genetics ; metabolism
2.Preventive Effect of Different Compatibilities of Ramulus Cinnamomi and Radix Paeomlae alba in Guizhi Decoction on Cardiac Sympathetic Denervation Induced by 6-OHDA.
Ping JIANG ; Du-fang MA ; Yue-hua JIANG ; Jin-long YANG ; Xiang-dong XU ; Xue WANG ; Hai-qing LIN ; Xiao LI
Chinese Journal of Integrated Traditional and Western Medicine 2016;36(5):608-613
OBJECTIVETo observe the preventive effect of different compatibilities of Ramulus Cinnamomi (RC) and Radix Paeomiae alba (RPA) in Guizhi Decoction (GZD) on neurotransmitters and their rate-limiting enzymes, and neurotrophic factors of cardiac sympathetic denervation model rats induced by 6-hydroxydopamine (6-OHDA).
METHODSTotally 54 male Wistar rats were randomly divided into 6 groups, i.e., the blank control group, the model group, the methycobal group, the 2:1 (RC/RPA) Guishao group, the 1:2 Guishao group, and the 1:1 Guishao group, 9 in each group. Sympathetic denervation was induced by intraperitoneal injection of 6-OHDA for three successive days. Rats in the methycobal group and GZD groups were administered with corresponding decoction by gastrogavage 1 week before modeling (methycobal at the daily dose 0.15 mg/kg; GZD at the daily dose of 4.0, 5.5, 5.5 g crude drugs/kg for GZD 1:1, 1:2, and 2:1 groups). All medication lasted for 10 successive days. Levels of norepinephrine (NE), tyrosine hydroxylase (TH), choline acetyl-transferase (ChAT), nerve growth factor (NGF), growth associated protein43 (GAP-43) and ciliary neurotrophic factor (CNTF) in myocar- dial homogenates of right atrium and ventricular septum were detected by ELISA.
RESULTSCompared with the blank control group, levels of NE, TH, TH/ChAT ratio, and GAP-43 in myocardial homogenates of right atrium and ventricular septum decreased in the model group, and level of NGF increased (P < 0.01, P < 0.05). Compared with the model group, levels of NE and GAP-43 increased in the right atrium and interventricular septum; NGF level of the ventricular septum decreased in the methycobal group and each GZD groups. TH and TH/ChAT ratio in the right atrium increased in the 2:1 Guishao group and the 1:2 Guishao group (P < 0.01, P < 0.05); NGF levels in the right atrium and interventricular septum decreased only in the 1:1 Guishao group (P < 0.01, P< 0.05). Compared with the methycobal group, levels of NE, TH, and GAP-43 in the right atrium and interventricular septum increased, and NGF levels in the right atrium and interventricular septum decreased in the 1:1 Guishao group (P < 0.05). Compared with the methycobal group, levels of NE and GAP-43 in interventricular septum increased in the 2:1 Guishao group (P < 0.05).
CONCLUSIONGZD (with the proportion between RC and RPA 2:1 and 1:1) could improve contents of neurotransmitters and their rate-limiting enzymes, as well as neurotrophic factors in cardiac sympathetic denervation model rats induced by 6-OHDA, alleviate cardiac sympathetic denervation induced by 6-OHDA, and maintain the balance of sympathetic-vagal nerve system.
Animals ; Choline O-Acetyltransferase ; metabolism ; Ciliary Neurotrophic Factor ; metabolism ; Drugs, Chinese Herbal ; pharmacology ; GAP-43 Protein ; metabolism ; Heart ; drug effects ; innervation ; Male ; Myocardium ; metabolism ; Nerve Growth Factor ; metabolism ; Norepinephrine ; metabolism ; Oxidopamine ; adverse effects ; Random Allocation ; Rats ; Rats, Wistar ; Sympathectomy ; Tyrosine 3-Monooxygenase ; metabolism
3.Change of memory function and decrease of nitric oxide level of whole brain in the transgenic mice expressing human tau 40 with P301L mutation.
Ig-wei GAO ; Li-xia YU ; Yan HONG ; Chao NIU ; Yuan CHEN ; Xue-lan WANG ; Ru-zhu CHEN ; Wang HAI
Chinese Journal of Applied Physiology 2015;31(5):385-389
OBJECTIVETo study the mechanism of learning and memory dysfuction in the transgenic mouse expressing human tau 40 isoform with P301L mutation (F10).
METHODSThe human tau protein expression and phosphor-tau protein levels were detected with Western blot method. The neurofibrillary tangles were observed with Bielshowsky silver stain. The behavior changes of learning and memory were observed by open field test and passive avoidance test. Acetyleholine level, activities of acetycholinesterase and choline acetyltransferase of whole brain was detected by colorimetry method. The nitric oxide level of whole brain was detected by nitrate enzyme reduction method.
RESULTSExogenous human tau gene was expressed and an elevation of phosphor-tau protein level in 7 and 3-month transgenic mice's hippocampus andcerebrocortex was observed. The neurofibrillary tangles were observed in cerebrocortex of 7-month transgenic mice; the 7-month transgenic mice also presented an evident reduction of learning and memory ability and nitric oxide level of the whole brain, but not changes in acetylcholine level, acetycholinesterase activity, choline acetyltransferase activity and expression in whole brain.
CONCLUSIONTau transgenic mice (F10) can still inherit their parents' biologiccal characters, and develop learning and memory dysfunction awnodh san obvious decrease in nitric oxide level of whole brain in the 7-month old mice, suggesting a decrease of nitric oxide level of whole brain would be involved in the mechanism of learning and memory dysfunction in these transgenic mice.
Acetylcholine ; metabolism ; Acetylcholinesterase ; metabolism ; Animals ; Brain ; physiopathology ; Choline O-Acetyltransferase ; metabolism ; Humans ; Membrane Proteins ; genetics ; Memory Disorders ; genetics ; physiopathology ; Mice ; Mice, Transgenic ; Mutation ; Nitric Oxide ; metabolism
4.Effect of Dipsacus total saponins on the ability of learning and memory and acetylcholine metabolism of hippocampus in AD rats.
Chinese Journal of Applied Physiology 2015;31(1):82-84
OBJECTIVETo study the effects of Dipsacus total saponins on the ability of learning and memory and its mechanism of action.
METHODSForty rats were randomly divided into blank control group, model group, Dipsacus group and positive control group (n = 10), general situation of rats were observed, the ability of learning and memory of rats was tested by Square water maze, the activities of acetylcholinesterase (AChE)and choline acetyltransferase (ChAT) of hippocampus in rats were measured using double antibody sandwich method.
RESULTSDuring the period of treatment, general situation had no obvious change in model group, but general situation and the ability of activity were gradually improved in Dipsacus group and positive control group. Compared with blank control group, the swimming time was obviously prolonged and the number of mistakes was obviously increased at different time, the activity of AChE was significantly enhanced and the activity of ChAT was significantly decreased in model group. Compared with model group, the swimming time was obviously shortened and the number of mistakes was obviously reduced at different time, the activities of AChE were significantly decreased and the activities of ChAT were significantly enhanced in Dipsacus group and positive control group; Compared with positive control group, the swimming time and the number of mistakes at different time and the activities of AChE and ChAT had no significant difference in Dipsacus group.
CONCLUSIONDipsacus total saponins can improve the ability of learning and memory in Alzheimer' s disease(AD) rats, its mechanism of 'action may be related to regulating ACh metabolism of hippocampus.
Acetylcholine ; metabolism ; Acetylcholinesterase ; metabolism ; Alzheimer Disease ; drug therapy ; physiopathology ; Animals ; Choline O-Acetyltransferase ; metabolism ; Dipsacaceae ; chemistry ; Disease Models, Animal ; Hippocampus ; drug effects ; Learning ; drug effects ; Memory ; drug effects ; Rats ; Saponins ; pharmacology
5.Effect of Guizhi Decoction (symbols; see text) on heart rate variability and regulation of cardiac autonomic nervous imbalance in diabetes mellitus rats.
Xiao LI ; Yue-hua JIANG ; Ping JIANG ; Jin-long YANG ; Du-fang MA ; Chuan-hua YANG
Chinese journal of integrative medicine 2014;20(7):524-533
OBJECTIVETo observe abnormalities in heart rate variability (HRV) in diabetic rats and to explore the effects of treatment with Guizhi Decoction ([symbols; see text]) on cardiac autonomic nervous (CAN) imbalance.
METHODSA radio-telemetry system for monitoring physiological parameters was implanted into rats to record electrocardiac signals and all indictors of HRV [time domain measures: standard deviation of all RR intervals in 24 h (SDNN), root mean square of successive differences (RMSSD), percentage of differences between adjacent RR intervals greater than 50 ms (PNN50), and standard deviation of the averages of RR intervals (SDANN); frequency domain measures: low frequency (LF), high frequency (HF), total power (TP), and LF/HF ratio]. The normal group was randomly selected, and the remaining rats were used to establish streptozocin (STZ)-induced diabetic model. After 4 weeks, the model rats were divided into the model group, the methycobal group, and the Guizhi Decoction group, 9 rats in each group. Four weeks after intragastric administration of the corresponding drugs, the right atria of the rats were collected for immunohistochemical staining of tyrosine hydroxylase (TH) and choline acetyltransferase (CHAT) to observe the distribution of the sympathetic and vagus nerves in the right atrium. The myocardial homogenate from the interventricular septum and the left ventricle was used for determination of TH, CHAT, growth-associated protein 43 (GAP-43), nerve growth factor (NGF), and ciliary neurotrophic factor (CNTF) levels using an enzyme-linked immunosorbent assay.
RESULTS(1) STZ rats had elevated blood glucose levels, reduced body weight, and decreased heart rate; there was no difference between the model group and the drug treated groups. (2) Compared with the model group, only RMSSD and TP increased in the methycobal group significantly (P<0.05); SDNN, RMSSD, PNN50, LF, HF, and TP increased, LF/HF decreased (P<0.05), and SDANN just showed a decreasing trend in the Guizhi Decoction group (P>0.05). TH increased, CHAT decreased, and TH/CHAT increased in the myocardial homogenate of the model group (P<0.05). Compared with the model group, left ventricular TH reduced in the methycobal group; and in the Guizhi Decoction group CHAT increased, while TH and TH/CHAT decreased (P<0.05). Compared with the model group, CNTF in the interventricular septum increased in the methycobal group (P<0.05); GAP-43 increased, NGF decreased, and CNTF increased (P<0.05) in the Guizhi Decoction group. There were significant differences in the reduction of NGF and elevation of CNTF between the Guizhi Decoction group and the methycobal group (P<0.05). (3) Immunohistochemical results showed that TH expression significantly increased and CHAT expression significantly decreased in the myocardia of the model group, whereas TH expression decreased and CHAT expression increased in the Guizhi Decoction group (P<0.05).
CONCLUSIONGuizhi Decoction was effective in improving the function of the vagus nerve, and it could alleviate autonomic nerve damage.
Animals ; Autonomic Nervous System ; drug effects ; physiopathology ; Choline O-Acetyltransferase ; metabolism ; Diabetes Mellitus, Experimental ; drug therapy ; physiopathology ; Diabetic Neuropathies ; drug therapy ; physiopathology ; Disease Models, Animal ; Drugs, Chinese Herbal ; pharmacology ; Heart ; innervation ; physiopathology ; Heart Rate ; drug effects ; physiology ; Male ; Monitoring, Physiologic ; methods ; Rats, Wistar ; Telemetry ; methods ; Treatment Outcome ; Tyrosine 3-Monooxygenase ; metabolism ; Vagus Nerve ; drug effects ; physiopathology
6.Effects of beta-amyloid and apolipoprotein E4 on hippocampal choline acetyl transferase in rats.
Li-xia CUI ; Feng GUO ; Xin-yi LI
Chinese Journal of Pathology 2013;42(5):325-329
OBJECTIVETo investigate the effects of beta-amyloid (Aβ) and apolipoprotein E4(apoE4) on choline acetyl transferase (ChAT) in hippocampus and to explore possible the synergistic effect of both Aβ and apoE4.
METHODSMale Wistar rats were divided into four groups: control group, Aβ group, apoE4 group and Aβ + apoE4 group. Rats in different group received injection of normal saline, Aβ1-40, apoE4 and Aβ1-40 + apoE4, respectively, into bilateral hippocampus CA1 regions under the control of a brain stereotaxic apparatus. The learning-memory ability with the escape latency and the times of passing platform and the expression of ChAT in hippocampus CA1 regions were documented.
RESULTSThe escape latency at fifth day and the times of passing platform and ChAT mRNA PU values were obtained for the control group (10.75 s ± 2.44 s, 4.13 ± 0.64, and 28.90 ± 4.43), apoE4 group (23.88 s ± 4.32 s, 2.38 ± 0.52, and 20.85 ± 3.98), Aβ group (43.50 s ± 9.78 s, 1.38 ± 0.52, and 16.96 ± 2.53), and Aβ + apoE4 group (70.63 s ± 10.04 s, 0.75 ± 0.71, and 13.01 ± 2.21). Through 5 days of training all animals acquired learning-memory ability with the gradually shortened escape latency, although injection of Aβ1-40 and apoE4 all induced learning-memory damage, due to a significantly prolonged the escape latency at fifth day (P < 0.01) and markedly decreased the times of passing platform (P < 0.01) in both Aβ and apoE4 group than in control group. An interaction between Aβ and apoE4 also was observed, with further prolonged escape latency(P < 0.01). ChAT mRNA PU values were significantly lower in the Aβ group and apoE4 group than in the control group (P < 0.01). Aβ and apoE4 demonstrated interaction in lowering ChAT mRNA level(P < 0.05).
CONCLUSIONSBoth Aβ and apoE4 induce an injury to hippocampal cholinergic system and its learning-memory ability, in which Aβ and apoE4 have a synergistic effect in the initiation of such injury.
Alzheimer Disease ; enzymology ; physiopathology ; Amyloid beta-Peptides ; toxicity ; Animals ; Apolipoprotein E4 ; toxicity ; CA1 Region, Hippocampal ; enzymology ; physiology ; Choline O-Acetyltransferase ; genetics ; metabolism ; Drug Synergism ; Escape Reaction ; drug effects ; Learning ; drug effects ; Male ; Memory ; drug effects ; RNA, Messenger ; metabolism ; Random Allocation ; Rats ; Rats, Wistar
7.Expression of choline acetyltransferase in the rat barrel cortex by electrical stimulation.
Hong-Kun FAN ; Chun YANG ; Yan-Yan ZHANG ; Xiao-Ping LE ; Chun-Guang ZHENG ; Li SHI ; Qian ZHANG
Chinese Journal of Applied Physiology 2013;29(4):312-316
OBJECTIVETo observe a turning performance in the rats excited by using a proper electrical stimuli of the barrel cortex region (BC), and the expression of choline acetyltransferase (ChAT) in the BC regions after electoral stimulation.
METHODSSD rats were divided into three groups. The stimulation electrodes were surgically implanted into the bilateral BC regions in the control group and the experimental group rats. The experiment group post surgery for seven days was given the electrical impulses via connection with the electrodes for three times each day through consecutive three days. Three groups of the rats were killed and the brains were quickly removed for frozen sections and then performed with conventional HE and immunohistochemistry staining. And protein samples were prepared from brain and the hippocampus tissues of the three groups to detect the level of the ChAT protein by Western blot.
RESULTSThe experimental rats turn left or right when continuously stimulation in the bilateral BC regions with electric pulse. HE staining showed no significant damage around electrodes in the cerebral cortex. Compared with the control and blank groups, the ChAT positive rate in the brain section in the experimental rats was significantly high by immunohistochemistry assay; the level of the ChAT protein in the rats given the electrical stimulation increased.
CONCLUSIONTurnings performance of the rat could be initiated hy electrical stimuli in the BC region. Expression of ChAT is significantly higher in the BC regions of rat under electrical stimulation, suggesting that acetylcholine might be associated with signal transmission between senses and movement behavior in the nervous central system.
Acetylcholine ; metabolism ; Animals ; Cerebral Cortex ; metabolism ; Choline O-Acetyltransferase ; metabolism ; Electric Stimulation ; Rats ; Rats, Sprague-Dawley
8.Electroacupuncture improves learning-memory of rats with low estrogen-induced cognitive impairment.
Xi TANG ; Cheng-Lin TANG ; Hong-Wu XIE ; Yun-E SONG
Acta Physiologica Sinica 2013;65(1):26-32
The present study was aimed to investigate the effect of electroacupuncture (EA) on learning-memory of rats with low estrogen-induced cognitive impairment and the possible mechanism. The rat model was established by ovariectomy, which resulted in low estrogen-induced cognitive impairment. EA was applied continuously for 3 months 2 weeks after ovariectomy. Morris water maze was used to test the ability of spatial learning and memory. Enzyme-linked immunosorbent assay (ELISA) and real-time quantitative RT-PCR were used to detect the concentration of serum estradiol (E2) and relative expression of choline acetyltransferase (ChAT) mRNA in hippocampus, respectively. The result showed that, compared with the sham group, the ovariectomy model group exhibited longer escape latency, reduced number of platform-crossing, lower concentration of serum E2, and decreased expression of ChAT mRNA in hippocampus. EA shortened the escape latency and increased the number of platform-crossing in the ovariectomy model group. Moreover, the concentration of serum E2 and the hippocampal expression of ChAT mRNA in the ovariectomy model group were significantly elevated by EA treatment. These results suggest EA is capable of improving learning and memory in ovariectomized rats, and the mechanism involves the up-regulation of the expression of ChAT mRNA in hippocampus induced by the increase of the serum concentration of estrogen.
Animals
;
Choline O-Acetyltransferase
;
metabolism
;
Cognition Disorders
;
therapy
;
Electroacupuncture
;
Estradiol
;
blood
;
deficiency
;
Female
;
Hippocampus
;
enzymology
;
Learning
;
Memory
;
Ovariectomy
;
RNA, Messenger
;
Rats
9.Effect of sailuotong capsule on intervening cognitive dysfunction of multi-infarct dementia in rats.
Li XU ; Cheng-ren LIN ; Jian-xun LIU ; Jian-xun REN ; Jun-mei LI ; Min WANG ; Hong-hai LI ; Wen-ting SONG ; Ming-jiang YAO ; Guang-rui WANG
China Journal of Chinese Materia Medica 2012;37(19):2943-2946
OBJECTIVETo study the effect of Sailuotong capsule (Sailuotong) on learning and memory functions of multi-infarct dementia (MID) rats and its mechanism.
METHODAll SD rats were divided into five groups, namely the sham operation group, the model group, the positive group, the low dosage Sailuotong-treated group and the high dosage Sailuotong-treated group. The multi-infarct dementia model was established by injecting the micro-sphere vascular occlusive agent. On the 10th day after the successful operation, the rats were administered intragastrically with distilled water, memantine hydrochloride (20 mg x kg(-1)) and Sailuotong (16.5 mg x kg(-1) and 33.0 mg x kg(-1)) once a day for 60 days respectively, in order to detect the effect of Sailuotong in different doses on the latent period and route length in Morris water maze and the activities of choline acetyltransferase (ChAT) and acetylcholinesterase (AchE) in brain tissues.
RESULTCompared with the sham operation rats, it had been observed that the latent period and route length of MID rats in Morris water maze were significantly increased (P < 0.05 or P < 0.01), and the activity of ChAT in brain tissues was significantly decreased (P < 0.05). After the intervention with Sailuotong for sixty days, the latent period and route length of MID rats in Morris water maze significantly shrank (P < 0.05 or P < 0.01). Additionally, Sailuotong decreased AchE activity, while increasing ChAT activity in brain tissues of MID rats (P < 0.05 or P < 0.01).
CONCLUSIONSailuotong capsule can improve cognitive dysfunction of MID rats to some extent. Its mechanism may be related to its different regulation of activities of ChAT and AchE in brain tissues.
Acetylcholinesterase ; metabolism ; Animals ; Brain ; metabolism ; pathology ; Choline O-Acetyltransferase ; metabolism ; Cognition Disorders ; drug therapy ; etiology ; metabolism ; Dementia, Multi-Infarct ; complications ; metabolism ; Drugs, Chinese Herbal ; administration & dosage ; pharmacology ; Male ; Maze Learning ; drug effects ; Rats ; Rats, Sprague-Dawley
10.Analysis on interrelation between electroacupuncture-induced cumulative analgesic effect and hypothalamic cholinergic activities in chronic neuropathic pain rats.
Jun-Ying WANG ; Fan-Ying MENG ; Shu-Ping CHEN ; Yong-Hui GAO ; Jun-Ling LIU
Chinese journal of integrative medicine 2012;18(9):699-707
OBJECTIVETo observe the effects of repeated electroacupuncture (EA) of Zusanli (ST36)- Yanglingquan (GB34) on hypothalamic acetylcholinesterase (AchE) and vesicular acetylcholine (ACh) transporter (VAChT) activities and choline acetyltransferase (ChAT) mRNA and muscarinic M1 receptor (M1R) mRNA expression in chronic constrictive injury (CCI) and/or ovariectomy (OVX) rats so as to reveal its underlying mechanism in cumulative analgesia.
METHODSA total of 103 female Wistar rats were randomly divided into normal control (n =15), CCI (n =15), CCI+EA2d (n =15), CCI+EA2W (n =15), OVX+CCI =13), OVX+CCI+EA2d (n =15), and OVX+CCI+EA2W groups (n =15). CCI model was established by ligature of the unilateral sciatic nerve with surgical suture. Memory impairment model was established by removal of the bilateral ovaries. Morris water test was conducted to evaluate the OVX rats' memory learning ability, and the thermal pain threshold (PT) of the bilateral paws was detected the next morning after EA. EA (2/15 Hz, 1 mA) was applied to bilateral ST36-GB34 for 30 min, once daily for 2 days or 2 weeks, respectively. Hypothalamic AChE activity was detected by histochemistry, VAChT immunoactivity was determined by immunohistochemistry, and ChAT mRNA and M1R mRNA expressions were assayed by reverse transcription-polymerase chain reaction (RT-PCR).
RESULTSIn comparison with the normal control group, the AChE activity in hypothalamic arcuate nucleus (ARC) and supraoptic nucleus (SON) regions of CCI group, AChE activity in paraventricular nucleus (PVN), ARC, and SON regions of OVX+CCI group, and hypothalamic muscarinic M1R mRNA expression levels in both CCI and OVX+CCI groups were down-regulated significantly (P <0.05). Compared with the CCI group, the AChE activities in hypothalamic ARC and SON regions of CCI+EA2d and CCI+EA2W groups and PVN region of CCI+EA2W group and hypothalamic ChAT mRNA and M1R mRNA expression levels in CCI+EA2W group were up-regulated considerably (P <0.05). In comparison with the OVX+CCI group, the AChE activities in PVN, ARC, and SON regions and the expressions of hypothalamic ChAT mRNA and VAChT in ARC region of OVX+CCI+EA2W group were up-regulated remarkably (P <0.05). The effects in rats of CCI+EA2W group were evidently superior to those of OVX+CCI+EA2d group in up-regulating AChE activities in PVN, ARC, and SON regions, VAChT immunoactivity in ARC region, and expression levels of hypothalamic ChAT mRNA and M1R mRNA (P <0.05). Similar situations were found in OVX+CCI rats after EA2W. It suggested a cumulative effect after repeated EA of ST36-GB34. Comparison between CCI+EA2W and OVX+CCI+EA2W groups showed that the effects in rats of the former group were evidently better than those of the latter group in up-regulating AChE activity in ARC and SON regions and the expressions of hypothalamic ChAT mRNA and M1 mRNA (P <0.05), suggesting a reduction of EA2W effects after OVX.
CONCLUSIONRepeated EA can significantly up-regulate AChE and VAChT activities and ChAT mRNA and M1R mRNA expressions in the hypothalamus of CCI and OVX+CCI rats, which may contribute to the cumulative analgesic effects of repeated EA and be closely related to the animals' neuromemory ability.
Acetylcholinesterase ; genetics ; metabolism ; Acupuncture Analgesia ; Animals ; Choline O-Acetyltransferase ; genetics ; metabolism ; Cholinergic Agents ; metabolism ; Chronic Pain ; enzymology ; metabolism ; pathology ; Constriction, Pathologic ; Electroacupuncture ; Female ; Gene Expression Regulation ; Hypothalamus ; enzymology ; metabolism ; pathology ; Neuralgia ; enzymology ; metabolism ; pathology ; Ovariectomy ; RNA, Messenger ; genetics ; metabolism ; Rats ; Rats, Wistar ; Receptor, Muscarinic M1 ; genetics ; metabolism ; Vesicular Acetylcholine Transport Proteins ; genetics ; metabolism

Result Analysis
Print
Save
E-mail