1.Advances in basic research on choline and central nervous system development and related disorders.
Zheng Long XIA ; Xu Ying TAN ; Yan Yan SONG
Chinese Journal of Preventive Medicine 2023;57(5):793-800
Choline is an essential nutrient that plays an integral role in all stages of the life cycle, with increasing interest in the relationship between choline and neurodevelopment. Choline is a major component in the synthesis of phospholipids, phosphatidylcholine and sphingolipids, and is an essential nutrient for methyl metabolism, acetylcholine synthesis and cell signaling. Choline plays an important role in neurogenesis and neural migration during fetal development, potentially influencing the development and prognosis of neurological disorders, but its mechanism of action is not yet clear. This article reviews the source and metabolism of choline, the effects and mechanism of choline on neurodevelopment and central nervous system related disorders.
Humans
;
Choline/metabolism*
;
Phosphatidylcholines/metabolism*
;
Central Nervous System/metabolism*
2.Mechanism of active ingredients in Periploca forrestii compound against rheumatoid arthritis based on integrative metabolomics and network pharmacology.
Qin ZHANG ; Hong ZHANG ; Chun-Mei YANG ; Bo WANG ; Chen-Yang LI ; Qi LI
China Journal of Chinese Materia Medica 2023;48(2):507-516
In this study, an ultra-performance liquid chromatography-quadrupole time-of-flight high resolution mass spectrometer(UPLC-Q-TOF-HRMS) was used to investigate the effects of the active ingredients in Periploca forrestii compound on spleen metabolism in rats with collagen-induced arthritis(CIA), and its potential anti-inflammatory mechanism was analyzed by network pharmacology. After the model of CIA was successfully established, the spleen tissues of rats were taken 28 days after administration. UPLC-Q-TOF-HRMS chromatograms were collected and analyzed by principal component analysis(PCA), orthogonal partial least squares discriminant analysis(OPLS-DA), and MetPA. The results showed that as compared with the blank control group, 22 biomarkers in the spleen tissues such as inosine, citicoline, hypoxanthine, and taurine in the model group increased, while 9 biomarkers such as CDP-ethanolamine and phosphorylcholine decreased. As compared with the model group, 21 biomarkers such as inosine, citicoline, CDP-ethanolamine, and phosphorylcholine were reregulated by the active ingredients in P. forrestii. Seventeen metabolic pathways were significantly enriched, including purine metabolism, taurine and hypotaurine metabolism, glycerophospholipid metabolism, and cysteine and methionine metabolism. Network pharmacology analysis found that purine metabolism, glycerophospholipid metabolism, and cysteine and methionine metabolism played important roles in the pathological process of rheumatoid arthritis. This study suggests that active ingredients in P. forrestii compound can delay the occurrence and development of inflammatory reaction by improving the spleen metabolic disorder of rats with CIA. The P. forrestii compound has multi-target and multi-pathway anti-inflammatory mechanism. This study is expected to provide a new explanation for the mechanism of active ingredients in P. forrestii compound against rheumatoid arthritis.
Rats
;
Animals
;
Periploca
;
Cysteine
;
Cytidine Diphosphate Choline
;
Network Pharmacology
;
Phosphorylcholine
;
Metabolomics
;
Arthritis, Rheumatoid/drug therapy*
;
Biomarkers
;
Glycerophospholipids
;
Methionine
;
Purines
;
Chromatography, High Pressure Liquid
3.Association between maternal plasma one-carbon biomarkers during pregnancy and fetal growth in twin pregnancies.
Xiao Li GONG ; Yu Feng DU ; Yang Yu ZHAO ; Tian Chen WU ; Hui Feng SHI ; Xiao Li WANG ; Yuan WEI
Chinese Journal of Obstetrics and Gynecology 2023;58(10):774-782
Objective: To characterize the relationship between the levels of plasma methyl donor and related metabolites (including choline, betaine, methionine, dimethylglycine and homocysteine) and fetal growth in twin pregnancies. Methods: A hospital-based cohort study was used to collect clinical data of 92 pregnant women with twin pregnancies and their fetuses who were admitted to Peking University Third Hospital from March 2017 to January 2018. Fasting blood was collected from the pregnant women with twin pregnancies (median gestational age: 18.9 weeks). The levels of methyl donors and related metabolites in plasma were quantitatively analyzed by high-performance liquid chromatography combined with mass spectrometry. The generalized estimation equation was used to analyze the relationship between maternal plasma methyl donors and related metabolites levels and neonatal outcomes of twins, and the generalized additive mixed model was used to analyze the relationship between maternal plasma methyl donors and related metabolites levels and fetal growth ultrasound indicators. Results: (1) General clinical data: of the 92 women with twin pregnancies, 66 cases (72%) were dichorionic diamniotic (DCDA) twin pregnancies, and 26 cases (28%) were monochorionic diamniotic (MCDA) twin pregnancies. The comparison of the levels of five plasma methyl donors and related metabolites in twin pregnancies with different basic characteristics showed that the median levels of plasma choline and betaine in pregnant women ≥35 years old were higher than those in pregnant women <35 years old, and the differences were statistically significant (all P<0.05). (2) Correlation between plasma methyl donor and related metabolites levels and neonatal growth indicators: after adjusting for confounding factors, plasma homocysteine level in pregnant women with twins was significantly negatively correlated with neonatal birth weight (β=-47.9, 95%CI:-94.3- -1.6; P=0.043). Elevated methionine level was significantly associated with decreased risks of small for gestational age infants (SGA; OR=0.5, 95%CI: 0.3-0.9; P=0.021) and low birth weight infants (OR=0.6, 95%CI: 0.4-0.9; P=0.020). Increased homocysteine level was associated with increased risks of SGA (OR=1.5, 95%CI: 1.0-2.2; P=0.029) and inconsistent growth in twin fetuses (OR=1.9, 95%CI: 1.0-3.7; P=0.049). (3) Correlation between the levels of plasma methyl donors and related metabolites and intrauterine growth indicators of twins pregnancies: for every 1 standard deviation increase in plasma choline level in pregnant women with twin pregnancies, fetal head circumference, abdominal circumference, femoral length and estimated fetal weight in the second trimester increased by 1.9 mm, 2.6 mm, 0.5 mm and 20.1 g, respectively, and biparietal diameter, abdominal circumference and estimated fetal weight increased by 0.7 mm, 3.0 mm and 38.4 g in the third trimester, respectively, and the differences were statistically significant (all P<0.05). (4) Relationship between plasma methyl donor and related metabolites levels in pregnant women with different chorionicity and neonatal birth weight and length: the negative correlation between plasma homocysteine level and neonatal birth weight was mainly found in DCDA twin pregnancy (β=-65.9, 95%CI:-110.6- -21.1; P=0.004). The levels of choline, betaine and dimethylglycine in plasma of MCDA twin pregnancy were significantly correlated with the birth weight and length of newborns (all P<0.05). Conclusion: Homocysteine level is associated with low birth weight in twins, methionine is associated with decreased risk of SGA, and choline is associated with fetal growth in the second and third trimesters of pregnancy.
Adult
;
Female
;
Humans
;
Infant, Newborn
;
Pregnancy/metabolism*
;
Betaine/metabolism*
;
Birth Weight/physiology*
;
Choline/metabolism*
;
Cohort Studies
;
Fetal Development/physiology*
;
Fetal Weight/physiology*
;
Homocysteine/metabolism*
;
Methionine/metabolism*
;
Pregnancy, Twin/physiology*
;
Biomarkers/metabolism*
;
Pregnancy Trimesters/physiology*
;
Pregnancy Outcome
4.FMO3-TMAO axis modulates the clinical outcome in chronic heart-failure patients with reduced ejection fraction: evidence from an Asian population.
Haoran WEI ; Mingming ZHAO ; Man HUANG ; Chenze LI ; Jianing GAO ; Ting YU ; Qi ZHANG ; Xiaoqing SHEN ; Liang JI ; Li NI ; Chunxia ZHAO ; Zeneng WANG ; Erdan DONG ; Lemin ZHENG ; Dao Wen WANG
Frontiers of Medicine 2022;16(2):295-305
The association among plasma trimethylamine-N-oxide (TMAO), FMO3 polymorphisms, and chronic heart failure (CHF) remains to be elucidated. TMAO is a microbiota-dependent metabolite from dietary choline and carnitine. A prospective study was performed including 955 consecutively diagnosed CHF patients with reduced ejection fraction, with the longest follow-up of 7 years. The concentrations of plasma TMAO and its precursors, namely, choline and carnitine, were determined by liquid chromatography-mass spectrometry, and the FMO3 E158K polymorphisms (rs2266782) were genotyped. The top tertile of plasma TMAO was associated with a significant increment in hazard ratio (HR) for the composite outcome of cardiovascular death or heart transplantation (HR = 1.47, 95% CI = 1.13-1.91, P = 0.004) compared with the lowest tertile. After adjustments of the potential confounders, higher TMAO could still be used to predict the risk of the primary endpoint (adjusted HR = 1.33, 95% CI = 1.01-1.74, P = 0.039). This result was also obtained after further adjustment for carnitine (adjusted HR = 1.33, 95% CI = 1.01-1.74, P = 0.039). The FMO3 rs2266782 polymorphism was associated with the plasma TMAO concentrations in our cohort, and lower TMAO levels were found in the AA-genotype. Thus, higher plasma TMAO levels indicated increased risk of the composite outcome of cardiovascular death or heart transplantation independent of potential confounders, and the FMO3 AA-genotype in rs2266782 was related to lower plasma TMAO levels.
Carnitine
;
Choline/metabolism*
;
Chronic Disease
;
Heart Failure/genetics*
;
Humans
;
Methylamines
;
Oxygenases
;
Prospective Studies
5.Changes of YAP activity at the early stage of nonalcoholic steatohepatitis and its spatiotemporal relationship with ductular reaction in mice.
Ya Xue LIU ; Jia En LIANG ; Wei Lan ZENG ; Yan WANG
Journal of Southern Medical University 2022;42(9):1324-1334
OBJECTIVE:
To explore the changes in Yes-associated protein (YAP) activity at the early stage of nonalcoholic steatohepatitis (NASH) and the spatiotemporal relationship between YAP and ductular reaction (DR).
METHODS:
Male C57BL/6J mouse models of NASH were established by feeding with a methionine- and choline-deficient (MCD) diet or a thioacetamide (TAA) diet for 12 weeks. At different time points during the feeding, liver histology of the mice was observed with HE and Masson trichrome staining. The mRNA expressions of YAP and its target genes (Ctgf, Cyr61, Acta2) were determined by qPCR, and the total protein expression level of YAP was measured with immunoblotting. The expression and distribution of YAP and the markers of DR (K19 and Sox9) were observed with immunohistochemical staining.
RESULTS:
At the early stage of NASH induced by MCD diet (1 to 4 weeks), the mRNA expression of YAP and its target genes and the total protein expression of YAP increased significantly (P < 0.01). The number of YAP-positive hepatocytes reached the peak level of 90.8 (cells per ×400 field of view) at week 2 and then decreased to 30.8 at week 4 (P < 0.001); YAP-positive ductular cells appeared near the portal area, where DR began to occur. From 8 to 12 weeks, numerous K19/Sox9-positive DR cells were observed in the hepatic lobules around the central vein (P < 0.01), while only a few YAP-positive hepatocytes were present in the liver tissue (P > 0.05), and the number of YAP-positive ductular cells gradually increased with time (P < 0.001). At the early stage of NASH induced by TAA diet (3 days to 2 weeks), the mRNA expression of YAP and its target genes and the total protein expression of YAP increased significantly (P < 0.05), and the number of YAP-positive hepatocytes reached the peak of 69.2 at week 2 and then decreased to 55.2 at week 4 (P < 0.001); YAP-positive ductular cells first appeared at the initial location of DR near the central vein. From 6 to 12 weeks, numerous K19/Sox9-positive DR cells occurred in the hepatic lobules around the central vein (P < 0.01). While the number of YAP-positive hepatocytes decreased (P < 0.001), the number of YAP-positive ductular cells continued to increase (P < 0.001).
CONCLUSION
During the development of NASH, YAP activation occurs earlier than DR but they are spatiotemporally correlated. YAP activation in hepatocytes may participate in DR by promoting hepatocyte dedifferentiation.
Animals
;
Choline
;
Disease Models, Animal
;
Hepatocytes
;
Liver/metabolism*
;
Male
;
Methionine/metabolism*
;
Mice
;
Mice, Inbred C57BL
;
Non-alcoholic Fatty Liver Disease/metabolism*
;
RNA, Messenger/metabolism*
;
Thioacetamide/metabolism*
;
YAP-Signaling Proteins
6.Novel biomarkers identifying hypertrophic cardiomyopathy and its obstructive variant based on targeted amino acid metabolomics.
Lanyan GUO ; Bo WANG ; Fuyang ZHANG ; Chao GAO ; Guangyu HU ; Mengyao ZHOU ; Rutao WANG ; Hang ZHAO ; Wenjun YAN ; Ling ZHANG ; Zhiling MA ; Weiping YANG ; Xiong GUO ; Chong HUANG ; Zhe CUI ; Fangfang SUN ; Dandan SONG ; Liwen LIU ; Ling TAO
Chinese Medical Journal 2022;135(16):1952-1961
BACKGROUND:
Hypertrophic cardiomyopathy (HCM) is an underdiagnosed genetic heart disease worldwide. The management and prognosis of obstructive HCM (HOCM) and non-obstructive HCM (HNCM) are quite different, but it also remains challenging to discriminate these two subtypes. HCM is characterized by dysmetabolism, and myocardial amino acid (AA) metabolism is robustly changed. The present study aimed to delineate plasma AA and derivatives profiles, and identify potential biomarkers for HCM.
METHODS:
Plasma samples from 166 participants, including 57 cases of HOCM, 52 cases of HNCM, and 57 normal controls (NCs), who first visited the International Cooperation Center for HCM, Xijing Hospital between December 2019 and September 2020, were collected and analyzed by high-performance liquid chromatography-mass spectrometry based on targeted AA metabolomics. Three separate classification algorithms, including random forest, support vector machine, and logistic regression, were applied for the identification of specific AA and derivatives compositions for HCM and the development of screening models to discriminate HCM from NC as well as HOCM from HNCM.
RESULTS:
The univariate analysis showed that the serine, glycine, proline, citrulline, glutamine, cystine, creatinine, cysteine, choline, and aminoadipic acid levels in the HCM group were significantly different from those in the NC group. Four AAs and derivatives (Panel A; proline, glycine, cysteine, and choline) were screened out by multiple feature selection algorithms for discriminating HCM patients from NCs. The receiver operating characteristic (ROC) analysis in Panel A yielded an area under the ROC curve (AUC) of 0.83 (0.75-0.91) in the training set and 0.79 (0.65-0.94) in the validation set. Moreover, among 10 AAs and derivatives (arginine, phenylalanine, tyrosine, proline, alanine, asparagine, creatine, tryptophan, ornithine, and choline) with statistical significance between HOCM and HNCM, 3 AAs (Panel B; arginine, proline, and ornithine) were selected to differentiate the two subgroups. The AUC values in the training and validation sets for Panel B were 0.83 (0.74-0.93) and 0.82 (0.66-0.98), respectively.
CONCLUSIONS
The plasma AA and derivatives profiles were distinct between the HCM and NC groups. Based on the differential profiles, the two established screening models have potential value in assisting HCM screening and identifying whether it is obstructive.
Humans
;
Amino Acids
;
Cysteine
;
Cardiomyopathy, Hypertrophic/diagnosis*
;
Biomarkers
;
Proline
;
Arginine
;
Ornithine
;
Glycine
;
Choline
7.Magnetic resonance spectroscopy features of the thalamus and the cerebellum and their association with clinical features in children with autism spectrum disorder: a prospective study.
Qian-Qian KANG ; Xu LI ; Guang-Lei TONG ; Ya-Lan FAN ; Lei SHI
Chinese Journal of Contemporary Pediatrics 2021;23(12):1250-1255
OBJECTIVES:
To study the changes in biochemical metabolites in the thalamus and the cerebellum and their association with clinical features in children with autism spectrum disorder (ASD).
METHODS:
In this prospective study, magnetic resonance spectroscopy (MRS) with point-resolved spatial selection was used to analyze the thalamus and the cerebellum at both sides in 50 children with ASD aged 2-6 years. Creatine (Cr) was as the internal standard to measure the relative values of N-acetylaspartate (NAA)/Cr, choline (Cho)/Cr, myoinositol (MI)/Cr, and glutamine and glutamate complex (Glx)/Cr, and the differences in metabolites and their association with clinical symptoms were compared.
RESULTS:
In the children with ASD, NAA/Cr in the left thalamus was positively correlated with the scores of hearing-language and hand-eye coordination in the Griffiths Development Scales-Chinese (
CONCLUSIONS
There are metabolic disorders in the cerebellum and the thalamus in children with ASD, and there is a correlation between the changes of metabolites in the left cerebellum and the left thalamus. Some metabolic indexes are related to the clinical symptoms of ASD. MRS may reveal the pathological basis of ASD and provide a basis for diagnosis and prognosis assessment of ASD as a noninvasive and quantitative detection method.
Autism Spectrum Disorder/diagnostic imaging*
;
Cerebellum/diagnostic imaging*
;
Child
;
Choline
;
Humans
;
Magnetic Resonance Spectroscopy
;
Prospective Studies
;
Thalamus/diagnostic imaging*
8.Distinct Urinary Metabolic Profile in Rheumatoid Arthritis Patients: A Possible Link between Diet and Arthritis Phenotype.
Jung Hee KOH ; Yune Jung PARK ; Saseong LEE ; Young Shick HONG ; Kwan Soo HONG ; Seung Ah YOO ; Chul Soo CHO ; Wan Uk KIM
Journal of Rheumatic Diseases 2019;26(1):46-56
OBJECTIVE: We undertook this study to investigate the discriminant metabolites in urine from patients with established rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), and from healthy individuals. METHODS: Urine samples were collected from 148 RA patients, 41 SLE patients and 104 healthy participants. The urinary metabolomic profiles were assessed using 1H nuclear magnetic resonance spectroscopy. The relationships between discriminant metabolites and clinical variables were assessed. Collagen-induced arthritis was induced in mice to determine if a choline-rich diet reduces arthritis progression. RESULTS: The urinary metabolic fingerprint of patients with established RA differs from that of healthy controls and SLE patients. Markers of altered gut microbiota (trimethylamine-N-oxide, TMAO), and oxidative stress (dimethylamine) were upregulated in patients with RA. In contrast, markers of mitochondrial dysfunction (citrate and succinate) and metabolic waste products (p-cresol sulfate, p-CS) were downregulated in patients with RA. TMAO and dimethylamine were negatively associated with serum inflammatory markers in RA patients. In particular, patients with lower p-CS levels exhibited a more rapid radiographic progression over two years than did those with higher p-CS levels. The in vivo functional study demonstrated that mice fed with 1% choline, a source of TMAO experienced a less severe form of collagen-induced arthritis than did those fed a control diet. CONCLUSION: Patients with RA showed a distinct urinary metabolomics pattern. Urinary metabolites can reflect a pattern indicative of inflammation and accelerated radiographic progression of RA. A choline-rich diet reduces experimentally-induced arthritis. This finding suggests that the interaction between diet and the intestinal microbiota contributes to the RA phenotype.
Animals
;
Arthritis*
;
Arthritis, Experimental
;
Arthritis, Rheumatoid*
;
Choline
;
Dermatoglyphics
;
Diet*
;
Gastrointestinal Microbiome
;
Healthy Volunteers
;
Humans
;
Inflammation
;
Lupus Erythematosus, Systemic
;
Magnetic Resonance Spectroscopy
;
Metabolome*
;
Metabolomics
;
Mice
;
Oxidative Stress
;
Phenotype*
;
Spectrum Analysis
;
Waste Products
9.Effects of cluster needling at the scalp points on the expression of ChAT and AchE of hippocampus in rats with Alzheimer's disease.
Hong-Lin LI ; Wei GAO ; Kun-Peng XIA ; Qi-Yue SUN ; Xiao-Wei TONG ; Kai-di LUAN ; Hong-Qi ZHU ; Hui-Min QI ; Bin ZHU ; Fei XU
Chinese Acupuncture & Moxibustion 2019;39(4):403-408
OBJECTIVE:
To explore the effects of cluster needling at the scalp points on the expression of choline acetyl transferase (ChAT) and choline cholinesterase (AchE).
METHODS:
A total of 60 Wistar rats were randomized into a sham-operation group, a model group, a medication group and a cluster needling group, 15 rats in each one. In the model group, the medication group and the cluster needling group, the models of Alzheimer's disease (AD) were established by the orienteering injection with Aβ1-42 in the bilateral hippocampal CA1 in the rats. In the sham-operation group, the distilled water was injected in bilateral hippocampus of rats. In the medication group, the lavage with aricept was adopted for the basic treatment, once a day, for 4 weeks consecutively. In the cluster needling group, on the base of the treatment as the medication group, the cluster needling at the scalp points was adopted, once a day, 6 times a week, for 4 weeks totally. In the sham-operation group and the model group, the normal feeding was provided. After intervention, the learning and memory ability was measured with Morris water maze in the rats of each group. The changes in the hippocampal gross structure were observed with HE staining. The changes in the positive expressions of hippocampal ChAT and AchE were determined with the immunohistochemical method.
RESULTS:
Compared with the sham-operation group, the escape latency was prolonged and the percentage of the second quadrant and the frequency of platform leaping were reduced in the rats of the model group (all <0.01). Compared with the model group, the escape latency was shortened and the percentage of the second quadrant and the frequency of platform leaping were increased in the rats of the cluster needling group and the medication group (<0.05, <0.01). Compared with the medication group, the escape latency was shortened and the percentage of the second quadrant and the frequency of platform leaping were increased in the rats of the cluster needling group (all <0.05). Compared with the sham-operation group, the expression of ChAT was decreased and that of AchE increased in the model group (both <0.01). Compared with the model group, the difference was not significant in ChAT expression (>0.05) and the expression of AchE was reduced (<0.05) in the medication group; the expression of ChAT was increased (<0.05) and that of AchE decreased (<0.01) in the cluster needling group. Compared with the medication group, the expression of ChAT was increased and that of AchE decreased in the cluster needling group (both <0.05).
CONCLUSION
The effect mechanism of cluster needling at the scalp points on AD could be related to the up-regulation of ChAT expression and down-regulation of AchE expression in the hippocampus. The combined treatment with the cluster needling and aricept achieves the better therapeutic effect on AD.
Alzheimer Disease
;
Animals
;
Choline O-Acetyltransferase
;
Hippocampus
;
Rats
;
Rats, Sprague-Dawley
;
Rats, Wistar
;
Scalp
10.An Analysis on Prescribing Patterns of Alzheimer's Dementia Treatment and Choline Alfoscerate using HIRA Claims Data
Sang Goo HWANG ; Hyekyung PARK
Korean Journal of Clinical Pharmacy 2019;29(1):1-8
BACKGROUND: Alzheimer's dementia is the most common dementia. However, recently, choline alfoscerate is prescribed for treating Alzheimer's dementia, although it is not a treatment for this disease. PURPOSE: To analyze the prescription patterns of choline alfoscerate as a dementia treatment for patients with Alzheimer's disease and to analyze, as well as the factors affecting choline alfoscerate prescription. METHOD: The 2016 HIRA-NPS data was used in this study. The code of Alzheimer's dementia is F00 in the ICD-10 disease classification code. We analyzed the demographic, clinical, and regional characteristics associated with donepezil, rivastigmine, galantamine, memantine, and choline alfoscerate prescriptions. All statistical and data analyse were conducted by SAS 9.4 and Excel. RESULTS: For patients with Alzheimer's disease, choline alfoscerate was the second most prescribed after donepezil. Analysis results showed that choline alfoscerate was more likely to be prescribed to men than to women, and more likely to be prescribed by local health centers than by medical institutions. Moreover, choline alfoscerate was highly likely to be prescribed at neurosurgical departments, among medical departments. CONCLUSION: This study confirmed that choline alfoscerate was prescribed considerably for patients with Alzheimer's dementia. Further studies valuating its clinical validity should be performed to clarify whether choline alfoscerate prescription is appropriate for treating Alzheimer's dementia.
Alzheimer Disease
;
Choline
;
Classification
;
Dementia
;
Female
;
Galantamine
;
Glycerylphosphorylcholine
;
Humans
;
International Classification of Diseases
;
Male
;
Memantine
;
Methods
;
Prescriptions
;
Rivastigmine

Result Analysis
Print
Save
E-mail