1.Physiological regulation of salicylic acid on Helianthus tubeuosus upon copper stress and root FTIR analysis.
Jinxiang AI ; Jieke GE ; Ziyi ZHANG ; Wenqian CHEN ; Jiayi LIANG ; Xinyi WANG ; Qiaoyuan WU ; Jie YU ; Yitong YE ; Tianyi ZHOU ; Jinyi SU ; Wenwen LI ; Yuhuan WU ; Peng LIU
Chinese Journal of Biotechnology 2023;39(2):695-712
Phytoremediation plays an important role in the treatment of heavy metal pollution in soil. In order to elucidate the mechanism of salicylic acid (SA) on copper absorption, seedlings from Xuzhou (with strong Cu-tolerance) and Weifang Helianthus tuberosus cultivars (with weak Cu-tolerance) were selected for pot culture experiments. 1 mmol/L SA was sprayed upon 300 mg/kg soil copper stress, and the photosynthesis, leaf antioxidant system, several essential mineral nutrients and the changes of root upon copper stress were analyzed to explore the mechanism of copper resistance. The results showed that Pn, Tr, Gs and Ci upon copper stress decreased significantly compared to the control group. Meanwhile, chlorophyll a, chlorophyll b and carotenoid decreased with significant increase in initial fluorescence (F0), maximum photochemical quantum yield of PSⅡ (Fv/Fm), electron transfer rate (ETR) and photochemical quenching coefficient (qP) content all decreased. The ascorbic acid (AsA) content was decreased, the glutathione (GSH) value was increased, the superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX) activity in the leaves were decreased, and the peroxidase (POD) activity was significantly increased. SA increased the Cu content in the ground and root system, and weakened the nutrient uptake capacity of K, Ca, Mg, and Zn in the root stem and leaves. Spray of exogenous SA can maintain the opening of leaf stomata, improve the adverse effect of copper on photosynthetic pigment and PSⅡ reaction center. Mediating the SOD and APX activity started the AsA-GSH cycle process, effectively regulated the antioxidant enzyme system in chrysanthemum taro, significantly reduced the copper content of all parts of the plant, and improved the ion exchange capacity in the body. External SA increased the content of the negative electric group on the root by changing the proportion of components in the root, promoted the absorption of mineral nutrient elements and the accumulation of osmoregulatory substances, strengthened the fixation effect of the root on metal copper, and avoided its massive accumulation in the H. tuberosus body, so as to alleviate the inhibitory effect of copper on plant growth. The study revealed the physiological regulation of SA upon copper stress, and provided a theoretical basis for planting H. tuberosus to repair soil copper pollution.
Antioxidants
;
Copper
;
Helianthus/metabolism*
;
Salicylic Acid/pharmacology*
;
Chlorophyll A/pharmacology*
;
Spectroscopy, Fourier Transform Infrared
;
Chlorophyll/pharmacology*
;
Ascorbic Acid
;
Superoxide Dismutase/metabolism*
;
Photosynthesis
;
Glutathione
;
Plant Leaves
;
Stress, Physiological
;
Seedlings
2.Physiological and biochemical mechanisms of brassinosteroid in improving anti-cadmium stress ability of Panax notoginseng.
Gao-Yu LIAO ; Zheng-Qiang JIN ; Lan-Ping GUO ; Ya-Meng LIN ; Zi-Xiu ZHENG ; Xiu-Ming CUI ; Ye YANG
China Journal of Chinese Materia Medica 2023;48(6):1483-1490
In this study, the effect of brassinosteroid(BR) on the physiological and biochemical conditions of 2-year-old Panax notoginseng under the cadmium stress was investigated by the pot experiments. The results showed that cadmium treatment at 10 mg·kg~(-1) inhibited the root viability of P. notoginseng, significantly increased the content of H_2O_2 and MDA in the leaves and roots of P. noto-ginseng, caused oxidative damage of P. notoginseng, and reduced the activities of SOD and CAT. Cadmium stress reduced the chlorophyll content of P. notoginseng, increased leaf F_o, reduced F_m, F_v/F_m, and PIABS, and damaged the photosynthesis system of P. notoginseng. Cadmium treatment increased the soluble sugar content of P. notoginseng leaves and roots, inhibited the synthesis of soluble proteins, reduced the fresh weight and dry weight, and inhibited the growth of P. notoginseng. External spray application of 0.1 mg·L~(-1) BR reduced the H_2O_2 and MDA content in P. notoginseng leaves and roots under the cadmium stress, alleviated cadmium-induced oxidative damage to P. notoginseng, improved the antioxidant enzyme activity and root activity of P. notoginseng, increased the content of chlorophyll, reduced the F_o of P. notoginseng leaves, increased F_m, F_v/F_m, and PIABS, alleviated the cadmium-induced damage to the photosynthesis system, and improved the synthesis ability of soluble proteins. In summary, BR can enhance the anti-cadmium stress ability of P. notoginseng by regulating the antioxidant enzyme system and photosynthesis system of P. notoginseng under the cadmium stress. In the context of 0.1 mg·L~(-1) BR, P. notoginseng can better absorb and utilize light energy and synthesize more nutrients, which is more suitable for the growth and development of P. notoginseng.
Cadmium/metabolism*
;
Antioxidants/pharmacology*
;
Panax notoginseng
;
Brassinosteroids/pharmacology*
;
Chlorophyll/metabolism*
;
Plant Roots/metabolism*
;
Stress, Physiological
3.Regulation of exogenous calcium on photosynthetic system of honeysuckle under salt stress.
Lu-Yao HUANG ; Zhuang-Zhuang LI ; Tong-Yao DUAN ; Lei WANG ; Yong-Qing ZHANG ; Jia LI
China Journal of Chinese Materia Medica 2019;44(8):1531-1536
Exogenous calcium can enhance the resistance of certain plants to abiotic stress. However,the role of calcium insaltstressed honeysuckle is unclear. The study is aimed to investigate the effects of exogenous calcium on the biomass,chlorophyll content,gas exchange parameters and chlorophyll fluorescence of honeysuckle under salt stress. The results showed that the calcium-treated honeysuckle had better photochemical properties than the salt-stressed honeysuckle,such as PIABS,PItotal,which represents the overall activity of photosystemⅡ(PSⅡ),and related parameters for characterizing electron transport efficiency φP0,ψE0,φE0,σR,and φR are significantly improved. At the same time,the gas exchange parameters Gs,Ci,Trare also maintained at a high level. In summary,exogenous calcium protects the activity of PSⅡ,promotes the transmission of photosynthetic electrons,and maintains a high Ci,therefore enhances the resistance of honeysuckle under salt stress.
Calcium
;
pharmacology
;
Chlorophyll
;
analysis
;
Lonicera
;
drug effects
;
physiology
;
Photosynthesis
;
Plant Leaves
;
Salt Stress
4.Regulation of extracellular ATP onchlorophyll content and fluorescence characteristics of Angelica sinensis seedlings under drought and low temperature stress.
Mu-Dan ZHANG ; Yuan FENG ; Zhen-Zhen SHI ; Jia-Xin CAO ; Ling-Yun JIA ; Han-Qing FENG
China Journal of Chinese Materia Medica 2019;44(7):1305-1313
As an important signal molecule, extracellular ATP(eATP) can regulate many physiological and biochemical responses to plant stress. In this study, the regulation of extracellular ATP(eATP) on chlorophyll content and chlorophyll fluorescence parameters of Angelica sinensis seedlings were studied under drought and low temperature stress. The results showed that all the chlorophyll content, the actual photochemical efficiency [Y(Ⅱ)], the electron transfer rate(ETR), the photochemical quenching coefficient(qP and qL) of A. sinensis leaves were significantly decreased under drought and low temperature stress, respectively. At the same time, non-photochemical quenching(NPQ and qN) were also all significantly increased, respectively. The application of eATP alleviated the decrease of chlorophyll content, Y(Ⅱ), ETR, qP and qL of A. sinensis leaves under drought and low temperature stress, and eliminated the increase of qN and NPQ. The results indicated that eATP could effectively increase the open ratio of PSⅡ reaction centers, and improve the electron transfer rate and light energy conversion efficiency of PSⅡ of A. sinensis leaves under drought and low temperature stress. It is beneficial to enhance the chlorophyll synthesis and the adaptability of PSⅡ about A. sinensis seedlings to drought and low temperature stress.
Adenosine Triphosphate
;
pharmacology
;
Angelica sinensis
;
chemistry
;
physiology
;
Chlorophyll
;
analysis
;
Cold Temperature
;
Droughts
;
Fluorescence
;
Photosynthesis
;
Plant Leaves
;
chemistry
;
Seedlings
;
chemistry
;
physiology
;
Stress, Physiological
;
Water
5.Effects of ZJ0273 on barley and growth recovery of herbicide-stressed seedlings through application of branched-chain amino acids.
Ling XU ; Jian-Yao SHOU ; Rafaqat Ali GILL ; Xiang GUO ; Ullah NAJEEB ; Wei-Jun ZHOU
Journal of Zhejiang University. Science. B 2019;20(1):71-83
In this study, we evaluated the effect of the herbicide propyl 4-(2-(4,6-dimethoxypyrimidin-2-yloxy)benzylamino) benzoate (ZJ0273) on barley growth and explored the potential to trigger growth recovery through the application of branched-chain amino acids (BCAAs). Barley plants were foliar-sprayed with various concentrations of ZJ0273 (100, 500, or 1000 mg/L) at the four-leaf stage. Increasing either the herbicide concentration or measurement time after herbicide treatment significantly impaired plant morphological parameters such as plant height and biomass, and affected physiological indexes, i.e. maximal photochemical efficiency (Fv/Fm), quantum yield of photosystem II (ФPSII), net photosynthetic rate (Pn), and chlorophyll meter value (soil and plant analyzer development (SPAD)). Cellular injury of herbicide-treated plants was also evidenced by increased levels of reactive oxygen species (ROS) and antioxidative enzyme activity. Elevated levels of herbicide significantly reduced the activity of acetolactate synthase (ALS)-a key enzyme in the biosynthesis of BCAAs. In a separate experiment, growth recovery in herbicide-stressed barley plants was studied using various concentrations of BCAAs (10, 50, 100, and 200 mg/L). Increasing BCAA concentration in growth media significantly increased the biomass of herbicide-stressed barley seedlings, but had no significant effect on non-stressed plants. Further, BCAAs (100 mg/L) significantly down-regulated ROS and consequently antioxidant enzyme levels in herbicide-stressed plants. Our results showed that exogenous application of BCAAs could reverse the inhibitory effects of ZJ0273 by restoring protein biosynthesis in barley seedlings.
Amino Acids, Branched-Chain/administration & dosage*
;
Antioxidants/metabolism*
;
Benzoates/pharmacology*
;
Biomass
;
Chlorophyll/metabolism*
;
Herbicides/pharmacology*
;
Hordeum/metabolism*
;
Photosynthesis/drug effects*
;
Plant Leaves/metabolism*
;
Reactive Oxygen Species/metabolism*
;
Seedlings/metabolism*
6.Apoptosis and migration suppression of HN-3 human laryngeal squamous cancer cells induced by photo-activation of 9-hydroxypheophorbide-α.
Peijie HE ; Wenjing MAO ; Huankang ZHANG ; Liang ZHOU
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2015;29(15):1367-1371
OBJECTIVE:
To investigate the effect and potential mechanisms about apoptosis induction and migration suppression of photodynamic therapy with a new photosensitizer, 9-hydroxypheophorbide-α (9-HPbD), and diode laser on HN-3 human laryngeal squamous cancer cells.
METHOD:
The attached HN-3 cancer cells were photosesitized with 0.29 μg/ml and 0.59 μg/ml 9-HPbD for 6 h and irradiated by 664 nm diode laser for 15 min at an energy density of 2.0 J/cm for activating 9-HPbD. Wound healing assay and photographing was respectively performed immediately after laser irradiation. Photographing focusing on the same location was repeated 12 h, 24 h and 36 h after PDT and cells migration distance counted respectively. H2DCFDA staining was used to assess accumulation of reactive oxygen series (ROS) 1 h after PDT. MTT assay, Hoechst33342/PI double staining, western blotting were respectively performed to assess cellular viability, apoptosis and the expression of Enos, p-c-Jun, EGFR.
RESULT:
Phototoxicity and apoptosis on HN-3 cells induced by 9-HPbD-PDT was exhibited in a dose-related manner. Neither 9-HPbD alone nor laser alone was cytotoxic to HN-3 cells. Generation of ROS was initiated immediately after PDT. The apoptotic cells, marked with condensed/fragmented blue or pink nuclei, and up-regulated expression of eNOS, p-c-Jun were subsequently induced 24 h after PDT. Coupled with a down-regulated expression of EGFR, a photosensitizer dose-ralated cell migration suppression was initiated by PDT. After pretreatment of GSH or ascorbic acid, a kind of antioxidant, the efficacy of PDT-induced apoptosis and migration suppression was partially inhibited.
CONCLUSION
Activation of p-c-Jun, eNOS and down-regulated expression of EGFR may respectively involve in the apoptosis induction and cell migration suppression after 9-HPbD-PDT. Generation of ROS may play an important role in the course of apoptosis induction and migration suppression of HN-3 cells initiated by 9-HPbD-PDT.
Apoptosis
;
Carcinoma, Squamous Cell
;
pathology
;
Cell Line, Tumor
;
drug effects
;
Cell Movement
;
Cell Survival
;
Chlorophyll
;
analogs & derivatives
;
pharmacology
;
Head and Neck Neoplasms
;
pathology
;
Humans
;
Laryngeal Neoplasms
;
pathology
;
Lasers
;
Photochemotherapy
;
Photosensitizing Agents
;
pharmacology
;
Squamous Cell Carcinoma of Head and Neck
7.Effects of Ca2+ on photosynthetic parameters of Pinellia ternata and accumulations of active components in heat stress.
Wei-Xing YANG ; Gang-Gang HEI ; Jiao-Jiao LI ; Hong-Min ZHANG ; Lin-Lin LI ; Neng-Biao WU
China Journal of Chinese Materia Medica 2014;39(14):2614-2618
OBJECTIVETo study the effect of exogenous Ca2+ on photosynthetic parameters of Pinellia ternate and accumulations of active components under high temperature stress.
METHODThe pigment contents of P. ternata leaves, photosynthesis parameters and chlorophyll fluorescence parameters of P. ternata leaves, the contents of guanosine, adenosine and polysaccharide in P. ternata tubers were measured based on different concentrations of exogenous Ca2+ in heat stress when the plant height of P. ternata was around 10 cm.
RESULTThe contents of total chlorophyll and ratio of chlorophyll a/b were relatively higher by spaying Ca2+. Compared with the control, spaying 6 mmol x L(-1) Ca2+ significantly enhanced the net photosynthetic rate (Pn), transpiration (Tr) and stomatal limitation (L8), but reduced intercellular CO2 concentration (C) in P. ternata leaves. With the increase of Ca2+ concentration, maximal PS II efficiency (Fv/Fm), actual photosynthetic efficiency (Yield) and photochemical quenching coefficient (qP) initially increased and then decreased, however, minimal fluorescence (Fo) and non-photochemical quenching coefficient (NPQ) went down first and then went up. The contents of guanosine and polysaccharide and dry weight of P. ternata tubers showed a tendency of increase after decrease, and the content of adenosine increased with the increase of Ca2+ concentration. The content of guanosine and polysaccharide in P. ternata tubers and its dry weight reached maximum when spaying 6 mmol x L(-1) Ca2+.
CONCLUSIONWith the treatment of calcium ion, the inhibition of photosynthesis and the damage of PS II system were relieved in heat stress, which increased the production of P. ternata tubers.
Breeding ; Calcium ; pharmacology ; Chlorophyll ; metabolism ; Dose-Response Relationship, Drug ; Heat-Shock Response ; drug effects ; Organ Size ; drug effects ; Photosynthesis ; drug effects ; Pinellia ; drug effects ; growth & development ; metabolism ; physiology ; Plant Leaves ; drug effects ; growth & development ; metabolism
8.Effects of nitrogen form on growth and quality of Chrysanthemums morifolium.
Peng ZHANG ; Kang-cai WANG ; Ming-chao CHENG ; Qing-hai GUO ; Jie ZHAO ; Xiu-Mei ZHAO ; Li LI
China Journal of Chinese Materia Medica 2014;39(17):3263-3268
This paper is aimed to study the effects of nitrogen form on the growth and quality of Chrysanthemums morifolium at the same nitrogen level. In order to provide references for nutrition regulation of Ch. morifolium in field production, pot experiments were carried out in the greenhouse at experimental station of Nanjing Agricultural University. Five proportions of ammonium and nitrate nitrogen were set up and a randomized block design was applied four times repeatedly. The results showed that the growth and quality of Ch. morifolium were significantly influenced by the nitrogen form. The content of chlorophyll and photosynthesis rate were the highest at the NH4(+) -N /NO3(-) -N ratio of 25:75; The activities of NR in different parts of Ch. -morifolium reached the highest at the NH4(+) - N/NO3(-) -N ratio of 0: 100. The contents of nitrate nitrogen in the root and leaves reached the highest at the NH4(+) -N/NO3(-) -N ratio of 50:50. The activities of GS, GOGAT and the content of amylum increased with the ratio of NO3(-) -N decreasing and reached it's maximum at the NH4 + -N/NO3 - -N ratio of 100: 0. The content of ammonium nitrogen were the highest at the NH4 + -N /NO3 --N ratio of 75: 25, while the content of soluble sugar reached the highest at the NH4(+)-N/NO3(-) -N ratio of 25: 75. The content of flavones, chlorogenic acid and 3,5-O-dicoffeoylqunic acid were 57.2 mg x g(-1), 0.673% and 1.838% respectively, reaching the maximum at the NH4(+) -N /NO3(-) -N ratio of 25:75; The content of luteoloside increased with the ratio of NO3(-) -N increasing and reached it's maximum at the NH4(+) -N/NO3(-) -N ratio of 0: 100. The yield of Ch. morifolium reached it's maximum at the NH4(+) -N /NO3(-) -N ratio of 25:75. Nitrogen form has some remarkable influence on the nitrogen metabolism, photosynthesis and growth, Nitrogen form conducive to the growth and quality of Ch. morifolium at the NH4(+) -N /NO3(-) -N ratio of 25: 75.
Ammonium Compounds
;
metabolism
;
pharmacology
;
Chlorophyll
;
metabolism
;
Chrysanthemum
;
drug effects
;
growth & development
;
metabolism
;
Flowers
;
drug effects
;
growth & development
;
metabolism
;
Glutamate Synthase
;
metabolism
;
Glutamate Synthase (NADH)
;
metabolism
;
Glutamate-Ammonia Ligase
;
Nitrates
;
metabolism
;
pharmacology
;
Nitrogen
;
metabolism
;
pharmacology
;
Photosynthesis
;
drug effects
;
Plant Leaves
;
drug effects
;
growth & development
;
metabolism
;
Plant Proteins
;
metabolism
;
Plant Roots
;
drug effects
;
growth & development
;
metabolism
;
Plant Stems
;
drug effects
;
growth & development
;
metabolism
9.Comparison on surface ultrastructure characteristic and drought resistance of different Trichosanthes kirilowii strains.
Jie ZHOU ; Lin ZOU ; Li-Hua BIAN ; Lei FANG ; Wei LIU ; Yong-Qing ZHANG ; Jia LI ; Fang ZHANG ; Xiao WANG
China Journal of Chinese Materia Medica 2014;39(9):1564-1568
Trichosanthes kirilowii has been widely cultivated as its medicinal use, health care and food value. Drought resistance of seedlings is an important feature in breeding. Seeds of two T. kirilowii strains were used to research the difference of surface ultrastructure characteristic and drought resistance. Scanning electron microscope was used to identify the surface ultrastructure characteristic of seeds and PEG was used to simulate drought stress. The seeds germination rate, MDA content, chlorophyll content and the antioxidant enzymes activity were measured under the drought stress. The results showed that the seed surface colour of KXY-001 was lighter than that of KXY-005. The testa cobwebbing of KXY-001 was more intensive than that of KXY-005. The germination rate of KXY-001 was higher than that of KXY-005 under drought stress. The MDA content was increased and the chlorophyll content was decreased with the increasing of drought degree. The SOD activity of KXY-001 was higher than that of KXY-005, while the activity of POD and CAT was also increased firstly and decreased later. Surface reticulate of seeds and hilar traits can be used as identification points to identify the investigated strains. SOD and POD are activated to resist drought in T. kirilowii seedlings and the drought resistance of KXY-001 is superior than that of KXY-005.
Adaptation, Physiological
;
drug effects
;
Catalase
;
metabolism
;
Chlorophyll
;
metabolism
;
Droughts
;
Germination
;
Malondialdehyde
;
metabolism
;
Microscopy, Electron, Scanning
;
Peroxidase
;
metabolism
;
Polyethylene Glycols
;
pharmacology
;
Seedlings
;
metabolism
;
Seeds
;
growth & development
;
metabolism
;
ultrastructure
;
Species Specificity
;
Superoxide Dismutase
;
metabolism
;
Trichosanthes
;
classification
;
growth & development
;
metabolism
10.Allelopathic effect of artemisinin on green algae.
Ye-Kuan WU ; Ling YUAN ; Jian-Guo HUANG ; Long-Yun LI
China Journal of Chinese Materia Medica 2013;38(9):1349-1354
To study the growth effects of differing concentrations of artemisinin on green algae and to evaluate the ecological risk. The effects of artemisinin on the growth and the content change of chlorophyll, protein, oxygen, conductivity, SOD, CAT, MDA in Chlorella pyrenoidosa and Scenedesmus oblique were studied through 96 h toxicity tests. Artemisinin accelerated the growth of algae at a lower concentration ( <40 microg . L-1) with content increase of chlorophyll or protein and so on, and it inhibited the growth of algae at higher concentration ( >80 microg . L-1). The content of chlorophyll or protein in algae cells reduced with the increasing concentration of artemisinin, exhibiting the good concentration-effect relationship. SOD and CAT activity was stimulated at low concentrations ( <40 microg . L-1 ) and inhibited at high concentrations ( >80 microg . L- 1). However, MDA content increased significantly with the increase of concentration. According to the seven kinds of indicators changes, the time-response and dose-response suggested that the surfactant first hurt in Ch. pyrenoidosa was damaging membrane by changing membrane lipid molecules soluble. And primary mechanism on Chlorophyta cells might be related to the oxidation damage of lipid and other biological large molecules caused by artemisinin. The large-scale intensive planting of Artemisia annua may reduce the surrounding water productivity.
Artemisinins
;
pharmacology
;
Chlorophyll
;
metabolism
;
Chlorophyta
;
drug effects
;
metabolism

Result Analysis
Print
Save
E-mail