1.Gene expression and immunolocalization of chitin deacetylase BmCDA2 in silkworm.
Yun HE ; Yifei CHEN ; Qinglang WANG ; Ziyu ZHANG ; Haonan DONG ; Taixia SHEN ; Yong HOU ; Jing GONG
Chinese Journal of Biotechnology 2023;39(4):1655-1669
Deacetylation of chitin is closely related to insect development and metamorphosis. Chitin deacetylase (CDA) is a key enzyme in the process. However, to date, the CDAs of Bombyx mori (BmCDAs), which is a model Lepidopteran insect, were not well studied. In order to better understand the role of BmCDAs in the metamorphosis and development of silkworm, the BmCDA2 which is highly expressed in epidermis was selected to study by bioinformatics methods, protein expression purification and immunofluorescence localization. The results showed that the two mRNA splicing forms of BmCDA2, namely BmCDA2a and BmCDA2b, were highly expressed in the larval and pupal epidermis, respectively. Both genes had chitin deacetylase catalytic domain, chitin binding domain and low density lipoprotein receptor domain. Western blot showed that the BmCDA2 protein was mainly expressed in the epidermis. Moreover, fluorescence immunolocalization showed that BmCDA2 protein gradually increased and accumulated with the formation of larval new epidermis, suggesting that BmCDA2 may be involved in the formation or assembly of larval new epidermis. The results increased our understandings to the biological functions of BmCDAs, and may facilitate the CDA study of other insects.
Animals
;
Bombyx/metabolism*
;
Metamorphosis, Biological/genetics*
;
Larva/metabolism*
;
Gene Expression
;
Insect Proteins/metabolism*
;
Chitin
2.Advances in the structure and function of chitosanase.
Jie XIE ; Yubin LI ; Jingwei LIU ; Yan GOU ; Ganggang WANG
Chinese Journal of Biotechnology 2023;39(3):912-929
Chitosanases represent a class of glycoside hydrolases with high catalytic activity on chitosan but nearly no activity on chitin. Chitosanases can convert high molecular weight chitosan into functional chitooligosaccharides with low molecular weight. In recent years, remarkable progress has been made in the research on chitosanases. This review summarizes and discusses its biochemical properties, crystal structures, catalytic mechanisms, and protein engineering, highlighting the preparation of pure chitooligosaccharides by enzymatic hydrolysis. This review may advance the understandings on the mechanism of chitosanases and promote its industrial applications.
Chitosan/chemistry*
;
Chitin
;
Glycoside Hydrolases/genetics*
;
Protein Engineering
;
Oligosaccharides/chemistry*
;
Hydrolysis
3.Preparation, characterization and activity evaluation of Spirulina-chitooligosaccharides capable of inhibiting biofilms.
Ruijie SUN ; Tong XU ; Yangyang LIU ; Liming ZHANG ; Siming JIAO ; Yuchen ZHANG ; Xiaodong GAO ; Zhuo WANG ; Yuguang DU
Chinese Journal of Biotechnology 2023;39(10):4135-4149
The biofilms formed by pathogenic microorganisms seriously threaten human health and significantly enhance drug resistance, which urgently call for developing drugs specifically targeting on biofilms. Chitooligosaccharides extracted from shrimp and crab shells are natural alkaline oligosaccharides with excellent antibacterial effects. Nevertheless, their inhibition efficacy on biofilms still needs to be improved. Spirulina (SP) is a microalga with negatively charged surface, and its spiral structure facilitates colonization in the depth of the biofilm. Therefore, the complex of Spirulina and chitooligosaccharides may play a synergistic role in killing pathogens in the depth of biofilm. This research first screened chitooligosaccharides with significant bactericidal effects. Subsequently, Spirulina@Chitooligosaccharides (SP@COS complex was prepared by combining chitooligosaccharides with Spirulina through electrostatic adsorption. The binding of the complex was characterized by zeta potential, z-average size, and fluorescence labeling. Ultraviolet-visible spectroscopy (UV-Vis) showed the encapsulation efficiency and the drug loading efficiency reached up to 90% and 16%, respectively. The prepared SP@COS2 exhibited a profound synergistic inhibition effect on bacterial and fungal biofilms, which was mainly achieved by destroying the cell structure of the biofilm. These results demonstrate the potential of Spirulina-chitooligosaccharides complex as a biofilm inhibitor and provide a new idea for addressing the harm of pathogenic microorganisms.
Humans
;
Spirulina
;
Anti-Bacterial Agents/chemistry*
;
Chitosan/pharmacology*
;
Biofilms
;
Chitin/pharmacology*
4.Expression and characterization of β-N-acetylglucosaminidases from Bacillus coagulans DSM1 for N-acetyl-β-D glucosamine production.
Congna LI ; Shun JIANG ; Chao DU ; Yuling ZHOU ; Sijing JIANG ; Guimin ZHANG
Chinese Journal of Biotechnology 2021;37(1):218-227
β-N-acetylglucosaminidases (NAGases) can convert natural substrates such as chitin or chitosan to N-acetyl-β-D glucosamine (GlcNAc) monomer that is wildly used in medicine and agriculture. In this study, the BcNagZ gene from Bacillus coagulans DMS1 was cloned and expressed in Escherichia coli. The recombinant protein was secreted into the fermentation supernatant and the expression amount reached 0.76 mg/mL. The molecular mass of purified enzyme was 61.3 kDa, and the specific activity was 5.918 U/mg. The optimal temperature and pH of the BcNagZ were 75 °C and 5.5, respectively, and remained more than 85% residual activity after 30 min at 65 °C. The Mie constant Km was 0.23 mmol/L and the Vmax was 0.043 1 mmol/(L·min). The recombinant BcNagZ could hydrolyze colloidal chitin to obtain trace amounts of GlcNAc, and hydrolyze disaccharides to monosaccharide. Combining with the reported exochitinase AMcase, BcNagZ could produce GlcNAc from hydrolysis of colloidal chitin with a yield over 86.93%.
Acetylglucosamine
;
Acetylglucosaminidase
;
Bacillus coagulans
;
Chitin
;
Chitinases
;
Hydrogen-Ion Concentration
;
Recombinant Proteins/genetics*
5.Microencapsulation of immunoglobulin Y: optimization with response surface morphology and controlled release during simulated gastrointestinal digestion.
Jin ZHANG ; Huan-Huan LI ; Yi-Fan CHEN ; Li-Hong CHEN ; Hong-Gang TANG ; Fan-Bin KONG ; Yun-Xin YAO ; Xu-Ming LIU ; Qian LAN ; Xiao-Fan YU
Journal of Zhejiang University. Science. B 2020;21(8):611-627
Immunoglobulin Y (IgY) is an effective orally administered antibody used to protect against various intestinal pathogens, but which cannot tolerate the acidic gastric environment. In this study, IgY was microencapsulated by alginate (ALG) and coated with chitooligosaccharide (COS). A response surface methodology was used to optimize the formulation, and a simulated gastrointestinal (GI) digestion (SGID) system to evaluate the controlled release of microencapsulated IgY. The microcapsule formulation was optimized as an ALG concentration of 1.56% (15.6 g/L), COS level of 0.61% (6.1 g/L), and IgY/ALG ratio of 62.44% (mass ratio). The microcapsules prepared following this formulation had an encapsulation efficiency of 65.19%, a loading capacity of 33.75%, and an average particle size of 588.75 μm. Under this optimum formulation, the coating of COS provided a less porous and more continuous microstructure by filling the cracks on the surface, and thus the GI release rate of encapsulated IgY was significantly reduced. The release of encapsulated IgY during simulated gastric and intestinal digestion well fitted the zero-order and first-order kinetics functions, respectively. The microcapsule also allowed the IgY to retain 84.37% immune-activity after 4 h simulated GI digestion, significantly higher than that for unprotected IgY (5.33%). This approach could provide an efficient way to preserve IgY and improve its performance in the GI tract.
Alginic Acid/chemistry*
;
Chitin/chemistry*
;
Chitosan
;
Delayed-Action Preparations
;
Digestion
;
Drug Compounding
;
Drug Liberation
;
Gastrointestinal Tract/metabolism*
;
Immunoglobulins/metabolism*
;
Oligosaccharides
6.Directed evolution of chitinase Chisb and biosynthesis of chitooligosaccharides.
Mengyan PAN ; Xianhao XU ; Yanfeng LIU ; Jianghua LI ; Xueqin LÜ ; Guocheng DU ; Long LIU
Chinese Journal of Biotechnology 2019;35(9):1787-1796
Chitinase has a wide industrial application prospect. For example, it can degrade shrimp shells, crab shells and other crustacean waste into high value-added chitooligosaccharides. However, the low catalytic efficiency of chitinase greatly limits the production of chitooligosaccharides. In previous study, the we expressed a chitinase Chisb with high catalytic efficiency and studied its enzymatic properties. In order to further improve the catalytic efficiency of Chisb, with R13NprB-C-SP-H as the parent, here error-prone PCR was used to construct random mutant library to conduct directed evolution of chitinase Chisb. Two mutants C43D and E336R were obtained with 96-well plate primary screening and shaker-screening, and their enzymatic properties were also studied. The optimum temperature of C43D and E336R was 55 °C, and the optimum pH of C43D was 5.0, while that of E336R was 9.0. The catalytic efficiency of C43D and E336R was 1.35 times and 1.57 times higher than that of control. The chitooligosaccharide concentration of E336R and C43D was 2.53 g/L and 2.06 g/L, improved by 2.84 times and 2.31 times compared with the control (0.89 g/L), respectively. In addition, the substrate conversion rate of mutants E336R and C43D was 84.3% and 68.7%, improved by 54.6% and 39% compared with the control (29.7%), respectively. In summary, the study indicates that random mutation introduced by error-prone PCR can effectively improve the catalytic efficiency of chitinase Chisb. The positive mutants with higher catalytic efficiency obtained in the above study and their enzymatic property analysis have important research significance and application value for the biosynthesis of chitooligosaccharides.
Biocatalysis
;
Chitin
;
analogs & derivatives
;
Chitinases
;
Hydrogen-Ion Concentration
;
Polymerase Chain Reaction
7.Progress in brewer's yeast cell wall stress response.
Mingfang ZHANG ; Jinjing WANG ; Chengtuo NIU ; Yongxian LI ; Feiyun ZHENG ; Chunfeng LIU ; Qi LI
Chinese Journal of Biotechnology 2019;35(7):1214-1221
Yeast cell wall plays an important role in the establishment and maintenance of cell morphology upon the cell wall stress. The cell wall of yeast consists of β-glucans, mannoproteins and chitin. The composition and structure remodel due to cell wall stress. Brewer's yeast cell wall exhibits stress response during long-term acclimation in order to adapt to environmental changes. This paper reviews the composition and structure of yeast cell wall and the molecular mechanisms of cell wall remodeling and signal pathway regulation.
Cell Wall
;
Chitin
;
Saccharomyces cerevisiae
8.A Case of Cutaneous Myiasis Caused by Cordylobia anthropophaga Larvae in a Korean Traveler Returning from Central Africa
Joo Yeon KO ; In Yong LEE ; Byeong Jin PARK ; Jae Min SHIN ; Jae Sook RYU
The Korean Journal of Parasitology 2018;56(2):199-203
The cutaneous myiasis has been rarely reported in the Republic of Korea. We intended to describe here a case of furuncular cutaneous myiasis caused by Cordylobia anthropophaga larvae in a Korean traveler returned from Central Africa. A patient, 55-year-old man, had traveled to Equatorial Guinea, in Central Africa for a month and just returned to Korea. Physical examinations showed 2 tender erythematous nodules with small central ulceration on the left buttock and thigh. During skin biopsy, 2 larvae came out from the lesion. C. anthropophaga was identified by paired mouth hooks (toothed, spade-like, oral hooklets) and 2 posterior spiracles, which lack a distinct chitinous rim. Although rarely described in Korea until now, cutaneous myiasis may be encountered more frequently with increasing international travel and exchange workers to tropical areas.
Africa, Central
;
Biopsy
;
Buttocks
;
Chitin
;
Equatorial Guinea
;
Humans
;
Korea
;
Larva
;
Middle Aged
;
Mouth
;
Myiasis
;
Physical Examination
;
Republic of Korea
;
Skin
;
Thigh
;
Ulcer
9.Biocontrol of Orchid-pathogenic Mold, Phytophthora palmivora, by Antifungal Proteins from Pseudomonas aeruginosa RS1.
Rapeewan SOWANPREECHA ; Panan RERNGSAMRAN
Mycobiology 2018;46(2):129-137
Black rot disease in orchids is caused by the water mold Phytophthora palmivora. To gain better biocontrol performance, several factors affecting growth and antifungal substance production by Pseudomonas aeruginosa RS1 were verified. These factors include type and pH of media, temperature, and time for antifungal production. The results showed that the best conditions for P. aeruginosa RS1 to produce the active compounds was cultivating the bacteria in Luria-Bertani medium at pH 7.0 for 21 h at 37 °C. The culture filtrate was subjected to stepwise ammonium sulfate precipitation. The precipitated proteins from the 40% to 80% fraction showed antifungal activity and were further purified by column chromatography. The eluted proteins from fractions 9–10 and 33–34 had the highest antifungal activity at about 75% and 82% inhibition, respectively. SDS-PAGE revealed that the 9–10 fraction contained mixed proteins with molecular weights of 54 kDa, 32 kDa, and 20 kDa, while the 33–34 fraction contained mixed proteins with molecular weights of 40 kDa, 32 kDa, and 29 kDa. Each band of the proteins was analyzed by LC/MS to identify the protein. The result from Spectrum Modeler indicated that these proteins were closed similarly to three groups of the following proteins; catalase, chitin binding protein, and protease. Morphological study under scanning electron microscopy demonstrated that the partially purified proteins from P. aeruginosa RS1 caused abnormal growth and hypha elongation in P. palmivora. The bacteria and/or these proteins may be useful for controlling black rot disease caused by P. palmivora in orchid orchards.
Ammonium Sulfate
;
Bacteria
;
Carrier Proteins
;
Catalase
;
Chitin
;
Chromatography
;
Electrophoresis, Polyacrylamide Gel
;
Fungi*
;
Hydrogen-Ion Concentration
;
Hyphae
;
Microscopy, Electron, Scanning
;
Molecular Weight
;
Phytophthora*
;
Pseudomonas aeruginosa*
;
Pseudomonas*
;
Water
10.First Report of Two Colletotrichum Species Associated with Bitter Rot on Apple Fruit in Korea – C. fructicola and C. siamense.
Myung Soo PARK ; Byung Ryun KIM ; In Hee PARK ; Soo Sang HAHM
Mycobiology 2018;46(2):154-158
Bitter rot caused by the fungal genus Colletotrichum is a well-known, common disease of apple and causes significant yield loss. In 2013, six fungal strains were isolated from Fuji apple fruits exhibiting symptoms of bitter rot from Andong, Korea. These strains were identified as Colletotrichum fructicola and C. siamense based on morphological characteristics and multilocus sequence analysis of the internal transcribed spacer rDNA, actin, calmodulin, chitin synthase, and glyceraldehyde-3-phosphate dehydrogenase Pathogenicity tests confirmed the involvement of C. fructicola and C. siamense in the development of disease symptoms on apple fruits. This is the first report of C. fructicola and C. siamense causing bitter rot on apple fruit in Korea.
Actins
;
Calmodulin
;
Chitin Synthase
;
Colletotrichum*
;
DNA, Ribosomal
;
Fruit*
;
Gyeongsangbuk-do
;
Korea*
;
Multilocus Sequence Typing
;
Oxidoreductases
;
Virulence

Result Analysis
Print
Save
E-mail