1.The Quantitative Evaluation of Automatic Segmentation in Lumbar Magnetic Resonance Images
Yao-Wen LIANG ; Yu-Ting FANG ; Ting-Chun LIN ; Cheng-Ru YANG ; Chih-Chang CHANG ; Hsuan-Kan CHANG ; Chin-Chu KO ; Tsung-Hsi TU ; Li-Yu FAY ; Jau-Ching WU ; Wen-Cheng HUANG ; Hsiang-Wei HU ; You-Yin CHEN ; Chao-Hung KUO
Neurospine 2024;21(2):665-675
		                        		
		                        			 Objective:
		                        			This study aims to overcome challenges in lumbar spine imaging, particularly lumbar spinal stenosis, by developing an automated segmentation model using advanced techniques. Traditional manual measurement and lesion detection methods are limited by subjectivity and inefficiency. The objective is to create an accurate and automated segmentation model that identifies anatomical structures in lumbar spine magnetic resonance imaging scans. 
		                        		
		                        			Methods:
		                        			Leveraging a dataset of 539 lumbar spinal stenosis patients, the study utilizes the residual U-Net for semantic segmentation in sagittal and axial lumbar spine magnetic resonance images. The model, trained to recognize specific tissue categories, employs a geometry algorithm for anatomical structure quantification. Validation metrics, like Intersection over Union (IOU) and Dice coefficients, validate the residual U-Net’s segmentation accuracy. A novel rotation matrix approach is introduced for detecting bulging discs, assessing dural sac compression, and measuring yellow ligament thickness. 
		                        		
		                        			Results:
		                        			The residual U-Net achieves high precision in segmenting lumbar spine structures, with mean IOU values ranging from 0.82 to 0.93 across various tissue categories and views. The automated quantification system provides measurements for intervertebral disc dimensions, dural sac diameter, yellow ligament thickness, and disc hydration. Consistency between training and testing datasets assures the robustness of automated measurements. 
		                        		
		                        			Conclusion
		                        			Automated lumbar spine segmentation with residual U-Net and deep learning exhibits high precision in identifying anatomical structures, facilitating efficient quantification in lumbar spinal stenosis cases. The introduction of a rotation matrix enhances lesion detection, promising improved diagnostic accuracy, and supporting treatment decisions for lumbar spinal stenosis patients. 
		                        		
		                        		
		                        		
		                        	
2.The Quantitative Evaluation of Automatic Segmentation in Lumbar Magnetic Resonance Images
Yao-Wen LIANG ; Yu-Ting FANG ; Ting-Chun LIN ; Cheng-Ru YANG ; Chih-Chang CHANG ; Hsuan-Kan CHANG ; Chin-Chu KO ; Tsung-Hsi TU ; Li-Yu FAY ; Jau-Ching WU ; Wen-Cheng HUANG ; Hsiang-Wei HU ; You-Yin CHEN ; Chao-Hung KUO
Neurospine 2024;21(2):665-675
		                        		
		                        			 Objective:
		                        			This study aims to overcome challenges in lumbar spine imaging, particularly lumbar spinal stenosis, by developing an automated segmentation model using advanced techniques. Traditional manual measurement and lesion detection methods are limited by subjectivity and inefficiency. The objective is to create an accurate and automated segmentation model that identifies anatomical structures in lumbar spine magnetic resonance imaging scans. 
		                        		
		                        			Methods:
		                        			Leveraging a dataset of 539 lumbar spinal stenosis patients, the study utilizes the residual U-Net for semantic segmentation in sagittal and axial lumbar spine magnetic resonance images. The model, trained to recognize specific tissue categories, employs a geometry algorithm for anatomical structure quantification. Validation metrics, like Intersection over Union (IOU) and Dice coefficients, validate the residual U-Net’s segmentation accuracy. A novel rotation matrix approach is introduced for detecting bulging discs, assessing dural sac compression, and measuring yellow ligament thickness. 
		                        		
		                        			Results:
		                        			The residual U-Net achieves high precision in segmenting lumbar spine structures, with mean IOU values ranging from 0.82 to 0.93 across various tissue categories and views. The automated quantification system provides measurements for intervertebral disc dimensions, dural sac diameter, yellow ligament thickness, and disc hydration. Consistency between training and testing datasets assures the robustness of automated measurements. 
		                        		
		                        			Conclusion
		                        			Automated lumbar spine segmentation with residual U-Net and deep learning exhibits high precision in identifying anatomical structures, facilitating efficient quantification in lumbar spinal stenosis cases. The introduction of a rotation matrix enhances lesion detection, promising improved diagnostic accuracy, and supporting treatment decisions for lumbar spinal stenosis patients. 
		                        		
		                        		
		                        		
		                        	
3.The Quantitative Evaluation of Automatic Segmentation in Lumbar Magnetic Resonance Images
Yao-Wen LIANG ; Yu-Ting FANG ; Ting-Chun LIN ; Cheng-Ru YANG ; Chih-Chang CHANG ; Hsuan-Kan CHANG ; Chin-Chu KO ; Tsung-Hsi TU ; Li-Yu FAY ; Jau-Ching WU ; Wen-Cheng HUANG ; Hsiang-Wei HU ; You-Yin CHEN ; Chao-Hung KUO
Neurospine 2024;21(2):665-675
		                        		
		                        			 Objective:
		                        			This study aims to overcome challenges in lumbar spine imaging, particularly lumbar spinal stenosis, by developing an automated segmentation model using advanced techniques. Traditional manual measurement and lesion detection methods are limited by subjectivity and inefficiency. The objective is to create an accurate and automated segmentation model that identifies anatomical structures in lumbar spine magnetic resonance imaging scans. 
		                        		
		                        			Methods:
		                        			Leveraging a dataset of 539 lumbar spinal stenosis patients, the study utilizes the residual U-Net for semantic segmentation in sagittal and axial lumbar spine magnetic resonance images. The model, trained to recognize specific tissue categories, employs a geometry algorithm for anatomical structure quantification. Validation metrics, like Intersection over Union (IOU) and Dice coefficients, validate the residual U-Net’s segmentation accuracy. A novel rotation matrix approach is introduced for detecting bulging discs, assessing dural sac compression, and measuring yellow ligament thickness. 
		                        		
		                        			Results:
		                        			The residual U-Net achieves high precision in segmenting lumbar spine structures, with mean IOU values ranging from 0.82 to 0.93 across various tissue categories and views. The automated quantification system provides measurements for intervertebral disc dimensions, dural sac diameter, yellow ligament thickness, and disc hydration. Consistency between training and testing datasets assures the robustness of automated measurements. 
		                        		
		                        			Conclusion
		                        			Automated lumbar spine segmentation with residual U-Net and deep learning exhibits high precision in identifying anatomical structures, facilitating efficient quantification in lumbar spinal stenosis cases. The introduction of a rotation matrix enhances lesion detection, promising improved diagnostic accuracy, and supporting treatment decisions for lumbar spinal stenosis patients. 
		                        		
		                        		
		                        		
		                        	
4.The Quantitative Evaluation of Automatic Segmentation in Lumbar Magnetic Resonance Images
Yao-Wen LIANG ; Yu-Ting FANG ; Ting-Chun LIN ; Cheng-Ru YANG ; Chih-Chang CHANG ; Hsuan-Kan CHANG ; Chin-Chu KO ; Tsung-Hsi TU ; Li-Yu FAY ; Jau-Ching WU ; Wen-Cheng HUANG ; Hsiang-Wei HU ; You-Yin CHEN ; Chao-Hung KUO
Neurospine 2024;21(2):665-675
		                        		
		                        			 Objective:
		                        			This study aims to overcome challenges in lumbar spine imaging, particularly lumbar spinal stenosis, by developing an automated segmentation model using advanced techniques. Traditional manual measurement and lesion detection methods are limited by subjectivity and inefficiency. The objective is to create an accurate and automated segmentation model that identifies anatomical structures in lumbar spine magnetic resonance imaging scans. 
		                        		
		                        			Methods:
		                        			Leveraging a dataset of 539 lumbar spinal stenosis patients, the study utilizes the residual U-Net for semantic segmentation in sagittal and axial lumbar spine magnetic resonance images. The model, trained to recognize specific tissue categories, employs a geometry algorithm for anatomical structure quantification. Validation metrics, like Intersection over Union (IOU) and Dice coefficients, validate the residual U-Net’s segmentation accuracy. A novel rotation matrix approach is introduced for detecting bulging discs, assessing dural sac compression, and measuring yellow ligament thickness. 
		                        		
		                        			Results:
		                        			The residual U-Net achieves high precision in segmenting lumbar spine structures, with mean IOU values ranging from 0.82 to 0.93 across various tissue categories and views. The automated quantification system provides measurements for intervertebral disc dimensions, dural sac diameter, yellow ligament thickness, and disc hydration. Consistency between training and testing datasets assures the robustness of automated measurements. 
		                        		
		                        			Conclusion
		                        			Automated lumbar spine segmentation with residual U-Net and deep learning exhibits high precision in identifying anatomical structures, facilitating efficient quantification in lumbar spinal stenosis cases. The introduction of a rotation matrix enhances lesion detection, promising improved diagnostic accuracy, and supporting treatment decisions for lumbar spinal stenosis patients. 
		                        		
		                        		
		                        		
		                        	
5.The Quantitative Evaluation of Automatic Segmentation in Lumbar Magnetic Resonance Images
Yao-Wen LIANG ; Yu-Ting FANG ; Ting-Chun LIN ; Cheng-Ru YANG ; Chih-Chang CHANG ; Hsuan-Kan CHANG ; Chin-Chu KO ; Tsung-Hsi TU ; Li-Yu FAY ; Jau-Ching WU ; Wen-Cheng HUANG ; Hsiang-Wei HU ; You-Yin CHEN ; Chao-Hung KUO
Neurospine 2024;21(2):665-675
		                        		
		                        			 Objective:
		                        			This study aims to overcome challenges in lumbar spine imaging, particularly lumbar spinal stenosis, by developing an automated segmentation model using advanced techniques. Traditional manual measurement and lesion detection methods are limited by subjectivity and inefficiency. The objective is to create an accurate and automated segmentation model that identifies anatomical structures in lumbar spine magnetic resonance imaging scans. 
		                        		
		                        			Methods:
		                        			Leveraging a dataset of 539 lumbar spinal stenosis patients, the study utilizes the residual U-Net for semantic segmentation in sagittal and axial lumbar spine magnetic resonance images. The model, trained to recognize specific tissue categories, employs a geometry algorithm for anatomical structure quantification. Validation metrics, like Intersection over Union (IOU) and Dice coefficients, validate the residual U-Net’s segmentation accuracy. A novel rotation matrix approach is introduced for detecting bulging discs, assessing dural sac compression, and measuring yellow ligament thickness. 
		                        		
		                        			Results:
		                        			The residual U-Net achieves high precision in segmenting lumbar spine structures, with mean IOU values ranging from 0.82 to 0.93 across various tissue categories and views. The automated quantification system provides measurements for intervertebral disc dimensions, dural sac diameter, yellow ligament thickness, and disc hydration. Consistency between training and testing datasets assures the robustness of automated measurements. 
		                        		
		                        			Conclusion
		                        			Automated lumbar spine segmentation with residual U-Net and deep learning exhibits high precision in identifying anatomical structures, facilitating efficient quantification in lumbar spinal stenosis cases. The introduction of a rotation matrix enhances lesion detection, promising improved diagnostic accuracy, and supporting treatment decisions for lumbar spinal stenosis patients. 
		                        		
		                        		
		                        		
		                        	
6.Asia-Pacific consensus on long-term and sequential therapy for osteoporosis
Ta-Wei TAI ; Hsuan-Yu CHEN ; Chien-An SHIH ; Chun-Feng HUANG ; Eugene MCCLOSKEY ; Joon-Kiong LEE ; Swan Sim YEAP ; Ching-Lung CHEUNG ; Natthinee CHARATCHAROENWITTHAYA ; Unnop JAISAMRARN ; Vilai KUPTNIRATSAIKUL ; Rong-Sen YANG ; Sung-Yen LIN ; Akira TAGUCHI ; Satoshi MORI ; Julie LI-YU ; Seng Bin ANG ; Ding-Cheng CHAN ; Wai Sin CHAN ; Hou NG ; Jung-Fu CHEN ; Shih-Te TU ; Hai-Hua CHUANG ; Yin-Fan CHANG ; Fang-Ping CHEN ; Keh-Sung TSAI ; Peter R. EBELING ; Fernando MARIN ; Francisco Javier Nistal RODRÍGUEZ ; Huipeng SHI ; Kyu Ri HWANG ; Kwang-Kyoun KIM ; Yoon-Sok CHUNG ; Ian R. REID ; Manju CHANDRAN ; Serge FERRARI ; E Michael LEWIECKI ; Fen Lee HEW ; Lan T. HO-PHAM ; Tuan Van NGUYEN ; Van Hy NGUYEN ; Sarath LEKAMWASAM ; Dipendra PANDEY ; Sanjay BHADADA ; Chung-Hwan CHEN ; Jawl-Shan HWANG ; Chih-Hsing WU
Osteoporosis and Sarcopenia 2024;10(1):3-10
		                        		
		                        			 Objectives:
		                        			This study aimed to present the Asia-Pacific consensus on long-term and sequential therapy for osteoporosis, offering evidence-based recommendations for the effective management of this chronic condition.The primary focus is on achieving optimal fracture prevention through a comprehensive, individualized approach. 
		                        		
		                        			Methods:
		                        			A panel of experts convened to develop consensus statements by synthesizing the current literature and leveraging clinical expertise. The review encompassed long-term anti-osteoporosis medication goals, first-line treatments for individuals at very high fracture risk, and the strategic integration of anabolic and anti resorptive agents in sequential therapy approaches. 
		                        		
		                        			Results:
		                        			The panelists reached a consensus on 12 statements. Key recommendations included advocating for anabolic agents as the first-line treatment for individuals at very high fracture risk and transitioning to anti resorptive agents following the completion of anabolic therapy. Anabolic therapy remains an option for in dividuals experiencing new fractures or persistent high fracture risk despite antiresorptive treatment. In cases of inadequate response, the consensus recommended considering a switch to more potent medications. The consensus also addressed the management of medication-related complications, proposing alternatives instead of discontinuation of treatment. 
		                        		
		                        			Conclusions
		                        			This consensus provides a comprehensive, cost-effective strategy for fracture prevention with an emphasis on shared decision-making and the incorporation of country-specific case management systems, such as fracture liaison services. It serves as a valuable guide for healthcare professionals in the Asia-Pacific region, contributing to the ongoing evolution of osteoporosis management. 
		                        		
		                        		
		                        		
		                        	
7.Scaling up the in-hospital hepatitis C virus care cascade in Taiwan
Chung-Feng HUANG ; Pey-Fang WU ; Ming-Lun YEH ; Ching-I HUANG ; Po-Cheng LIANG ; Cheng-Ting HSU ; Po-Yao HSU ; Hung-Yin LIU ; Ying-Chou HUANG ; Zu-Yau LIN ; Shinn-Cherng CHEN ; Jee-Fu HUANG ; Chia-Yen DAI ; Wan-Long CHUANG ; Ming-Lung YU
Clinical and Molecular Hepatology 2021;27(1):136-143
		                        		
		                        			 Background/Aims:
		                        			Obstacles exist in facilitating hepatitis C virus (HCV) care cascade. To increase timely and accurate diagnosis, disease awareness and accessibility, in-hospital HCV reflex testing followed by automatic appointments and a late call-back strategy (R.N.A. model) was applied. We aimed to compare the HCV treatment rate of patients treated with this strategy compared to those without. 
		                        		
		                        			Methods:
		                        			One hundred and twenty-five anti-HCV seropositive patients who adopted the R.N.A. model in 2020 and another 1,396 controls treated in 2019 were enrolled to compare the gaps in accurate HCV RNA diagnosis to final treatment allocation. 
		                        		
		                        			Results:
		                        			The HCV RNA testing rate was significantly higher in patients who received reflex testing than in those without reflex testing (100% vs. 84.8%, P<0.001). When patients were stratified according to the referring outpatient department, a significant improvement in the HCV RNA testing rate was particularly noted in patients from non-hepatology departments (100% vs. 23.3%, P<0.001). The treatment rate in HCV RNA seropositive patients was 83% (83/100) after the adoption of the R.N.A. model, among whom 96.1% and 73.9% of patients were from the hepatology and non-hepatology departments, respectively. Compared to subjects without R.N.A. model application, a significant improvement in the treatment rate was observed for patients from non-hepatology departments (73.9% vs. 27.8%, P=0.001). The application of the R.N.A. model significantly increased the in-hospital HCV treatment uptake from 6.4% to 73.9% for patients from non-hepatology departments (P<0.001). 
		                        		
		                        			Conclusions
		                        			The care cascade increased the treatment uptake and set up a model for enhancing in-hospital HCV elimination. 
		                        		
		                        		
		                        		
		                        	
8.Sofosbuvir/velpatasvir plus ribavirin for Child-Pugh B and Child-Pugh C hepatitis C virus-related cirrhosis
Chen-Hua LIU ; Chi-Yi CHEN ; Wei-Wen SU ; Chun-Jen LIU ; Ching-Chu LO ; Ke-Jhang HUANG ; Jyh-Jou CHEN ; Kuo-Chih TSENG ; Chi-Yang CHANG ; Cheng-Yuan PENG ; Yu-Lueng SHIH ; Chia-Sheng HUANG ; Wei-Yu KAO ; Sheng-Shun YANG ; Ming-Chang TSAI ; Jo-Hsuan WU ; Po-Yueh CHEN ; Pei-Yuan SU ; Jow-Jyh HWANG ; Yu-Jen FANG ; Pei-Lun LEE ; Chi-Wei TSENG ; Fu-Jen LEE ; Hsueh-Chou LAI ; Tsai-Yuan HSIEH ; Chun-Chao CHANG ; Chung-Hsin CHANG ; Yi-Jie HUANG ; Jia-Horng KAO
Clinical and Molecular Hepatology 2021;27(4):575-588
		                        		
		                        			Background/Aims:
		                        			Real-world studies assessing the effectiveness and safety of sofosbuvir/velpatasvir (SOF/VEL) plus ribavirin (RBV) for Child-Pugh B/C hepatitis C virus (HCV)-related cirrhosis are limited. 
		                        		
		                        			Methods:
		                        			We included 107 patients with Child-Pugh B/C HCV-related cirrhosis receiving SOF/VEL plus RBV for 12 weeks in Taiwan. The sustained virologic response rates at off-treatment week 12 (SVR12) for the evaluable population (EP), modified EP, and per-protocol population (PP) were assessed. Thesafety profiles were reported. 
		                        		
		                        			Results:
		                        			The SVR12 rates in the EP, modified EP and PP were 89.7% (95% confidence interval [CI], 82.5–94.2%), 94.1% (95% CI, 87.8–97.3%), and 100% (95% CI, 96.2–100%). Number of patients who failed to achieve SVR12 were attributed to virologic failures. The SVR12 rates were comparable regardless of patient characteristics. One patient discontinued treatment because of adverse events (AEs). Twenty-four patients had serious AEs and six died, but none were related to SOF/VEL or RBV. Among the 96 patients achieving SVR12, 84.4% and 64.6% had improved Child-Pugh and model for endstage liver disease (MELD) scores. Multivariate analysis revealed that a baseline MELD score ≥15 was associated with an improved MELD score of ≥3 (odds ratio, 4.13; 95% CI, 1.16–14.71; P=0.02). Patients with chronic kidney disease (CKD) stage 1 had more significant estimated glomerular filtration rate declines than patients with CKD stage 2 (-0.42 mL/min/1.73 m2/month; P=0.01) or stage 3 (-0.56 mL/min/1.73 m2/month; P<0.001). 
		                        		
		                        			Conclusions
		                        			SOF/VEL plus RBV for 12 weeks is efficacious and well-tolerated for Child-Pugh B/C HCV-related cirrhosis.
		                        		
		                        		
		                        		
		                        	
9.Sofosbuvir/velpatasvir plus ribavirin for Child-Pugh B and Child-Pugh C hepatitis C virus-related cirrhosis
Chen-Hua LIU ; Chi-Yi CHEN ; Wei-Wen SU ; Chun-Jen LIU ; Ching-Chu LO ; Ke-Jhang HUANG ; Jyh-Jou CHEN ; Kuo-Chih TSENG ; Chi-Yang CHANG ; Cheng-Yuan PENG ; Yu-Lueng SHIH ; Chia-Sheng HUANG ; Wei-Yu KAO ; Sheng-Shun YANG ; Ming-Chang TSAI ; Jo-Hsuan WU ; Po-Yueh CHEN ; Pei-Yuan SU ; Jow-Jyh HWANG ; Yu-Jen FANG ; Pei-Lun LEE ; Chi-Wei TSENG ; Fu-Jen LEE ; Hsueh-Chou LAI ; Tsai-Yuan HSIEH ; Chun-Chao CHANG ; Chung-Hsin CHANG ; Yi-Jie HUANG ; Jia-Horng KAO
Clinical and Molecular Hepatology 2021;27(4):575-588
		                        		
		                        			Background/Aims:
		                        			Real-world studies assessing the effectiveness and safety of sofosbuvir/velpatasvir (SOF/VEL) plus ribavirin (RBV) for Child-Pugh B/C hepatitis C virus (HCV)-related cirrhosis are limited. 
		                        		
		                        			Methods:
		                        			We included 107 patients with Child-Pugh B/C HCV-related cirrhosis receiving SOF/VEL plus RBV for 12 weeks in Taiwan. The sustained virologic response rates at off-treatment week 12 (SVR12) for the evaluable population (EP), modified EP, and per-protocol population (PP) were assessed. Thesafety profiles were reported. 
		                        		
		                        			Results:
		                        			The SVR12 rates in the EP, modified EP and PP were 89.7% (95% confidence interval [CI], 82.5–94.2%), 94.1% (95% CI, 87.8–97.3%), and 100% (95% CI, 96.2–100%). Number of patients who failed to achieve SVR12 were attributed to virologic failures. The SVR12 rates were comparable regardless of patient characteristics. One patient discontinued treatment because of adverse events (AEs). Twenty-four patients had serious AEs and six died, but none were related to SOF/VEL or RBV. Among the 96 patients achieving SVR12, 84.4% and 64.6% had improved Child-Pugh and model for endstage liver disease (MELD) scores. Multivariate analysis revealed that a baseline MELD score ≥15 was associated with an improved MELD score of ≥3 (odds ratio, 4.13; 95% CI, 1.16–14.71; P=0.02). Patients with chronic kidney disease (CKD) stage 1 had more significant estimated glomerular filtration rate declines than patients with CKD stage 2 (-0.42 mL/min/1.73 m2/month; P=0.01) or stage 3 (-0.56 mL/min/1.73 m2/month; P<0.001). 
		                        		
		                        			Conclusions
		                        			SOF/VEL plus RBV for 12 weeks is efficacious and well-tolerated for Child-Pugh B/C HCV-related cirrhosis.
		                        		
		                        		
		                        		
		                        	
10.The Influence of Resilience on the Coping Strategies in Patients with Primary Brain Tumors
Shu-Yuan LIANG ; Hui-Chun LIU ; Yu-Ying LU ; Shu-Fang WU ; Ching-Hui CHIEN ; Shiow-Luan TSAY
Asian Nursing Research 2020;14(1):50-55
		                        		
		                        			Purpose:
		                        			The purpose of this study was to assess the amount of variance in the coping strategies of patients with brain tumors that could be accounted for by resilience. 
		                        		
		                        			Methods:
		                        			This cross-sectional survey involved 95 patients who had experienced surgical, chemotherapy, or radiotherapy therapies for their brain tumors at least 1 month before data collection. The investigator collected data using the scales of the Ways of Coping Checklist-Revised and Resilience Scale. Data were analyzed using descriptive statistics, t tests, analysis of variance, Pearson product–moment correlation, and hierarchical multiple regression. 
		                        		
		                        			Results:
		                        			The results revealed that resilience was significantly positively associated with patients' problem-focused coping (r = .65, p < .001) and total coping (r = .49, p < .001). In addition, resilience accounted for 27% (R2inc = .27, p < .001) and 16% ((R2inc = .16, p < .001) of the distinct variances in predicting patients’ problem-focused coping and total coping. 
		                        		
		                        			Conclusion
		                        			The current results provide evidence to support the importance of resilience in shaping the coping strategies of relevant patients. As resilience shows a crucial element in patient coping with brain tumors, health team members should develop and employ appropriate strategies to improve the resilience of patients with brain tumors.
		                        		
		                        		
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail