1.Machine learning identification of LRRC15 and MICB as immunodiagnostic markers for rheumatoid arthritis
Yanhu TIAN ; Xinan HUANG ; Tongtong GUO ; Rusitanmu·Ahetanmu ; Jiangmiao LUO ; Yao XIAO ; Chao WANG ; Weishan WANG
Chinese Journal of Tissue Engineering Research 2025;29(11):2411-2420
BACKGROUND:Rheumatoid arthritis is a chronic autoimmune disease.Early diagnosis is crucial for preventing disease progression and for effective treatment.Therefore,it is of significance to investigate the diagnostic characteristics and immune cell infiltration of rheumatoid arthritis. OBJECTIVE:Based on the Gene Expression Omnibus(GEO)database,to screen potential diagnostic markers of rheumatoid arthritis using machine learning algorithms and to investigate the relationship between the diagnostic characteristics of rheumatoid arthritis and immune cell infiltration in this pathology. METHODS:The gene expression datasets of synovial tissues related to rheumatoid arthritis were obtained from the GEO database.The data sets were merged using a batch effect removal method.Differential expression analysis and functional correlation analysis of genes were performed using R software.Bioinformatics analysis and three machine learning algorithms were used for the extraction of disease signature genes,and key genes related to rheumatoid arthritis were screened.Furthermore,we analyzed immune cell infiltration on all differentially expressed genes to examine the inflammatory state of rheumatoid arthritis and investigate the correlation between their diagnostic characteristics and infiltrating immune cells. RESULTS AND CONCLUSION:In both rheumatoid arthritis and normal synovial tissues,we identified 179 differentially expressed genes,with 124 genes up-regulated and 55 genes down-regulated.Enrichment analysis revealed a significant correlation between rheumatoid arthritis and immune response.Three machine learning algorithms identified LRRC15 and MICB as potential biomarkers of rheumatoid arthritis.LRRC15(area under the curve=0.964,95%confidence interval:0.924-0.992)and MICB(area under the curve=0.961,95%confidence interval:0.923-0.990)demonstrated strong diagnostic performance on the validation dataset.The infiltration of 13 types of immune cells was altered,with macrophages being the most affected.In rheumatoid arthritis,the majority of proinflammatory pathways in immune cell function were activated.Immunocorrelation analysis revealed that LRRC15 and MICB had the strongest correlation with M1 macrophages.To conclude,this study identified LRRC15 and MICB as potential diagnostic markers for rheumatoid arthritis,with strong diagnostic performance and significant correlation with immune cell infiltration.Machine learning and bioinformatics analysis deepened the understanding of immune infiltration in rheumatoid arthritis and provided new ideas for the diagnosis and treatment of rheumatoid arthritis.
2.Programmed death receptor 1 inhibits osteogenic differentiation of rat bone marrow mesenchymal stem cells in a high glucose environment
Nianrong HAN ; Yifei HUANG ; Akram·Osman ; Yanlu LIU ; Wei HU
Chinese Journal of Tissue Engineering Research 2025;29(19):3961-3967
BACKGROUND:The mechanism of programmed death receptor-1(PD-1)effect on osteogenic differentiation of bone marrow mesenchymal stem cells in high glucose environment remains unclear. OBJECTIVE:To explore the effect of PD-1 on osteogenic differentiation of rat bone marrow mesenchymal stem cells in high glucose environment and its regulatory mechanism. METHODS:Rat bone marrow mesenchymal stem cells were randomly divided into normal glucose group(5.6 mmol/L),high glucose group(30 mmol/L),PD-1 overexpression group,PD-1 overexpression no-load group,PD-1 knockdown group,PD-1 knockdown no-load group,and PI3K/AKT pathway inhibitor group(PD-1 knockdown+5 μmol/L LY294002).Rat bone marrow mesenchymal stem cells were cultured in high glucose to simulate the diabetic environment in vitro.The mRNA expression of PD-1 and ligand PD-L1 and the mRNA expression of osteogenic markers Runx2 and OSX in rat bone marrow mesenchymal stem cells were detected by qRT-PCR.The osteogenic differentiation ability was observed by alkaline phosphatase staining and alizarin red staining.Cell proliferation was detected by CCK-8 assay.The protein expressions of PD-1,PD-L1,p-PI3K,and p-AKT were detected by western blot assay. RESULTS AND CONCLUSION:(1)The levels of PD-1 and PD-L1 were significantly increased in the high glucose environment in vitro,and the osteogenic differentiation ability of bone marrow mesenchymal stem cells was inhibited in the high glucose environment.(2)Knockdown of PD-1 expression could promote osteogenic differentiation of bone marrow mesenchymal stem cells,increase cell proliferation activity,and activate the PI3K/AKT pathway.(3)After addition of PI3K/AKT pathway inhibitor LY294002,the ability of bone marrow mesenchymal stem cells to differentiate into osteoblasts decreased.The results show that PD-1 is dependent on the PI3K/AKT signaling pathway to inhibit osteogenic differentiation of rat bone marrow mesenchymal stem cells under high glucose environment.
3.Mogroside Ⅴ promotes osteogenic differentiation of bone marrow mesenchymal stem cells by modulating M1 polarization of macrophages under high glucose condition
Zhimao YE ; Jiuying HUI ; Xiaoxia ZHONG ; Yuying MAI ; Hao LI
Chinese Journal of Tissue Engineering Research 2025;29(19):3968-3975
BACKGROUND:The diabetic microenvironment can cause excessive M1 polarization of macrophages,and this hyperglycemic inflammatory state can inhibit osteogenic differentiation of bone marrow mesenchymal stem cells,thus affecting the healing of diabetic bone defects.Studies have indicated that mogroside V possesses anti-inflammatory,antioxidant,and hypoglycemic properties.However,its potential to modulate M1 polarization of macrophages and osteogenic differentiation of bone marrow mesenchymal stem cells under high glucose and inflammatory condition remains unclear. OBJECTIVE:To explore the effect of mogroside V on regulating M1 macrophage polarization and its effect on osteogenic differentiation of bone marrow mesenchymal stem cells under high glucose and inflammatory condition. METHODS:Murine diabetic models were established using C57BL/6 mice.Bone marrow-derived macrophages were isolated from tibia and fibula of normal and diabetic mice,and cultured in low-glucose and high-glucose media.Then M1 polarization of bone marrow-derived macrophages was induced using lipopolysaccharide and interferon-γ.Bone marrow-derived macrophages were treated with 160,320,and 640 μmol/L mogroside V.Flow cytometry was employed to determine the proportion of F4/80+CD86+cells.qRT-PCR was utilized to assess mRNA expression levels of inducible nitric oxide synthase,interleukin 1β,and interleukin 6.ELISA was employed to evaluate tumor necrosis factor-α secretion in bone marrow-derived macrophage supernatants.Bone marrow mesenchymal stem cells were isolated from tibia and fibula of C57BL/6 suckling mice,and induced osteogenic differentiation using low-or high-glucose osteogenic induction medium.Bone marrow mesenchymal stem cells were treated with M1 macrophage-conditioned mediums with or without 320 μmol/L mogroside V in osteogenic differentiation process.qRT-PCR was employed to assess the mRNA expression of alkaline phosphatase,Runt-related factor 2,osteocalcin,and osteopontin on day 14 after osteogenic induction.Alizarin red staining and quantitative analysis were conducted to evaluate calcium deposition on day 21 after osteogenic induction. RESULTS AND CONCLUSION:(1)Flow cytometry results showed that with the treatment of 320 and 640 μmol/L mogroside V,the proportion of F4/80+CD86+bone marrow-derived macrophages was significantly lower than that in the high-glucose control group(P<0.05).(2)qRT-PCR results showed that with the treatment of 160,320,and 640 μmol/L mogroside V,the mRNA expression levels of inducible nitric oxide synthase and interleukin 6 were significantly lower than that in the high-glucose control group(P<0.05).With the treatment of 320 and 640 μmol/L mogroside V,the mRNA expression level of interleukin 1β was significantly lower than that in the high-glucose control group(P<0.05).(3)ELISA results exhibited that with the treatment of 160,320,and 640 μmol/L mogroside V,the tumor necrosis factor-α secretion level was significantly lower than that in the high-glucose control group(P<0.05).(4)With the treatment of 320 μmol/L mogroside V,calcium salt deposition was increased in bone marrow mesenchymal stem cells under high glucose and inflammatory conditions(P<0.05),and the mRNA relative expression levels of alkaline phosphatase,Runt-related factor 2,and osteopontin were increased(P<0.05).These findings indicate that mogroside V can promote osteogenic differentiation of bone marrow mesenchymal stem cells by inhibiting the M1 polarization of bone marrow-derived macrophages under high glucose and inflammatory conditions and reducing the generation of inflammatory factors.
4.Treadmill training activates endogenous neural stem cells to promote spinal cord injury repair in mice
Chanjuan CHEN ; Zeyu SHANGGUAN ; Qizhe LI ; Wei TAN ; Qing LI
Chinese Journal of Tissue Engineering Research 2025;29(19):3976-3982
BACKGROUND:Treadmill training is one of the effective ways to promote the recovery of motor function after spinal cord injury.Treadmill training can promote neurogenesis,but the effect of different intensities of treadmill training on the activation of endogenous stem cells is still unclear. OBJECTIVE:To analyze the activation effect of different intensities of treadmill training on endogenous neural stem cells in the spinal cord of mice after spinal cord injury. METHODS:Fifty female C57BL/6J mice were divided into control group,spinal cord injury group,low-,moderate-,and high-intensity exercise groups with 10 mice in each group by random number table method.T10 segment spinal cord injury model was constructed by the clamp method in spinal cord injury group,low-,moderate-,and high-intensity exercise groups.On day 7 after spinal cord injury,mice in the low-,moderate-,and high-intensity exercise groups were respectively trained on the treadmill with corresponding intensity,3 times/d,10 min/times,6 times a week for 28 consecutive days.At 3,7,14,21,and 28 days after treadmill training,the hind limb motor function was evaluated by BMS score.At 28 days after treadmill training,the spinal cord tissue of the injured area was obtained,and the expression of epidermal growth factor receptor,glial fibrillary acidic protein,and 5-Ethynyl-2'-deoxyuridine(EdU),a proliferative marker,was detected.Hematoxylin-eosin staining was used to observe the morphology of spinal cord. RESULTS AND CONCLUSION:(1)The BMS score of mice in the spinal cord injury group was lower than that in the control group(P<0.05).With the extension of treadmill training time,the BMS scores of mice with spinal cord injury gradually increased,and the BMS scores of mice in moderate-intensity exercise group on days 14 and 21 after treadmill training were higher than those in spinal cord injury group and low-and high-intensity exercise groups(P<0.05).The BMS score of mice in moderate-and high-intensity exercise group was higher than that in spinal cord injury group and low-intensity exercise group at 28 days after treadmill training(P<0.05).(2)Compared with the control group,the proportion of epidermal growth factor receptor and EdU positive cells was increased in spinal cord injury group(P<0.05).Compared with spinal cord injury group,the proportion of epidermal growth factor receptor and EdU positive cells was increased in low-,moderate-,and high-intensity exercise groups(P<0.05),and the highest was found in moderate-intensity exercise group.Compared with control group,the proportion of glial fibrillary acidic protein positive cells was increased in spinal cord injury group(P<0.05).Compared with spinal cord injury group,the proportion of glial fibrillary acidic protein positive cells was lower in low-,moderate-,and high-intensity exercise groups(P<0.05),and the moderate-intensity exercise group was the lowest.(3)Hematoxylin-eosin staining showed that a large cavity was formed in the injured area of mice with spinal cord injury,and the cavity in the injured area of mice with spinal cord injury decreased after different intensities of treadmill training,and the decrease was most obvious in the moderate-intensity exercise group.(4)These results indicate that low-,moderate-,and high-intensity treadmill training can promote the recovery of motor function of mice with spinal cord injury by activating endogenous neural stem cells,and the effect of moderate-intensity exercise training is the most obvious.
5.Effects of long non-coding RNA KIAA0125 on proliferation and apoptosis of acute myeloid leukemia U937 cells
Huali HU ; Fahua DENG ; Yuancheng LIU ; Siqi WANG ; Jingxin ZHANG ; Tingting LU ; Hai HUANG ; Sixi WEI
Chinese Journal of Tissue Engineering Research 2025;29(19):3983-3991
BACKGROUND:U937 cells can be used as a cell model for studying the biological characteristics,signaling pathways,and therapeutic targets of acute myeloid leukemia.Although it has been reported that long non-coding RNA KIAA0125 is highly expressed in acute myeloid leukemia,its biological function in U937 cells remains unclear,and its mechanism of action in the occurrence and development of acute myeloid leukemia needs to be further clarified. OBJECTIVE:To investigate the expression level of long non-coding RNA KIAA0125 in peripheral blood of patients with acute myeloid leukemia and its effect on the proliferation and apoptosis of U937 cells. METHODS:RNA-sequencing was used to analyze the bone marrow monocyte samples from acute myeloid leukemia patients,and the differentially expressed gene long non-coding RNA KIAA0125 was screened.The expression of long non-coding RNA KIAA0125 in peripheral blood of patients with acute myeloid leukemia was detected by qRT-PCR.The relationship between long non-coding RNA KIAA0125 mRNA expression and prognosis in bone marrow cells of 173 acute myeloid leukemia patients and 70 healthy people was statistically analyzed by GEPIA database.Subsequently,recombinant lentivirus technology and CRISPR/Cas9-SAM technology were used to construct U937 cell lines with knockdown/overexpression of long non-coding RNA KIAA0125.qRT-PCR was used to detect the knockdown/overexpression efficiency of long non-coding RNA KIAA0125.Next,CCK-8 assay,flow cytometry,and western blot assay were used to detect the effects of knockdown/overexpression of long non-coding RNA KIAA0125 on the proliferation and apoptosis of U937 cells.Finally,western blot assay was used to detect the effect of knockdown/overexpressed long non-coding RNA KIAA0125 on Wnt/β-catenin signaling pathway-related proteins. RESULTS AND CONCLUSION:(1)The results of qRT-PCR showed that long non-coding RNA KIAA0125 was highly expressed in peripheral blood of acute myeloid leukemia patients.The results of GEPIA database showed that long non-coding RNA KIAA0125 was highly expressed in bone marrow cells of acute myeloid leukemia patients,and the high expression group had worse overall survival.(2)The knockdown efficiency of long non-coding RNA KIAA0125 in knockdown group was 70%,and the U937 cells that stably down-regulated long non-coding RNA KIAA0125 expression were successfully constructed.The expression of long non-coding RNA KIAA0125 in overexpression group was four times that of vector group,and stable U937 cells were successfully constructed.(3)Knockdown of long non-coding RNA KIAA0125 inhibited the proliferation of U937 cells and promoted their apoptosis.Overexpression of long non-coding RNA KIAA0125 promoted the proliferation of U937 cells but had no significant effect on the apoptosis of U937 cells.(4)Knockdown of long non-coding RNA KIAA0125 inhibited the activity of Wnt/β-catenin signaling pathway,while overexpression of long non-coding RNA KIAA0125 activated Wnt/β-catenin signaling pathway.These results confirm that long non-coding RNA KIAA0125 is highly expressed in acute myeloid leukemia peripheral blood.Long non-coding RNA KIAA0125 may affect the proliferation and apoptosis of U937 cells by regulating the Wnt/β-catenin signaling pathway,and may be a potential prognostic marker for acute myeloid leukemia.
6.Effect of oxymatrine on expression of stem markers and osteogenic differentiation of periodontal ligament stem cells
Jing LUO ; Min YONG ; Qi CHEN ; Changyi YANG ; Tian ZHAO ; Jing MA ; Donglan MEI ; Jinpeng HU ; Zhaojun YANG ; Yuran WANG ; Bo LIU
Chinese Journal of Tissue Engineering Research 2025;29(19):3992-3999
BACKGROUND:Human periodontal ligament stem cells are potential functional cells for periodontal tissue engineering.However,long-term in vitro culture may lead to reduced stemness and replicative senescence of periodontal ligament stem cells,which may impair the therapeutic effect of human periodontal ligament stem cells. OBJECTIVE:To investigate the effect of oxymatrine on the stemness maintenance and osteogenic differentiation of periodontal ligament stem cells in vitro,and to explore the potential mechanism. METHODS:Periodontal ligament stem cells were isolated from human periodontal ligament tissues by tissue explant enzyme digestion and cultured.The surface markers of mesenchymal cells were identified by flow cytometry.Periodontal ligament stem cells were incubated with 0,2.5,5,and 10 μg/mL oxymatrine.The effect of oxymatrine on the proliferation activity of periodontal ligament stem cells was detected by CCK8 assay.The appropriate drug concentration for subsequent experiments was screened.Western blot assay was used to detect the expression of stem cell non-specific proteins SOX2 and OCT4 in periodontal ligament stem cells.qRT-PCR and western blot assay were used to detect the expression levels of related osteogenic genes and proteins in periodontal ligament stem cells. RESULTS AND CONCLUSION:(1)The results of CCK8 assay showed that 2.5 μg/mL oxymatrine significantly enhanced the proliferative activity of periodontal stem cells,and the subsequent experiment selected 2.5 μg/mL oxymatrine to intervene.(2)Compared with the blank control group,the protein expression level of SOX2,a stem marker of periodontal ligament stem cells in the oxymatrine group did not change significantly(P>0.05),and the expression of OCT4 was significantly up-regulated(P<0.05).(3)Compared with the osteogenic induction group,the osteogenic genes ALP,RUNX2 mRNA expression and their osteogenic associated protein ALP protein expression of periodontal ligament stem cells were significantly down-regulated in the oxymatrine+osteogenic induction group(P<0.05).(4)The oxymatrine up-regulated the expression of stemness markers of periodontal ligament stem cells and inhibited the bone differentiation of periodontal ligament stem cells,and the results of high-throughput sequencing showed that it may be associated with WNT2,WNT16,COMP,and BMP6.
7.Effect and mechanisms of highly active umbilical cord mesenchymal stem cells on aging spleen in elderly tree shrews
Li YE ; Chuan TIAN ; Xiaojuan ZHAO ; Mengdie CHEN ; Qianqian YE ; Qiang LI ; Zhuyin LIAO ; Ye LI ; Xiangqing ZHU ; Guangping RUAN ; Zhixu HE ; Liping SHU ; Xinghua PAN
Chinese Journal of Tissue Engineering Research 2025;29(19):4000-4010
BACKGROUND:Spleen has the functions of blood storage,hematopoiesis,and immunity.With the increase of age,the structural degeneration and functional decline of spleen lead to the impairment of immune system function,thus accelerating the aging process of the body.The treatment of spleen aging in tree shrews with highly active umbilical cord mesenchymal stem cells has not been reported. OBJECTIVE:To explore the intervention effect and mechanism of highly active umbilical cord mesenchymal stem cells on spleen aging in tree shrews. METHODS:Highly active umbilical cord mesenchymal stem cells were isolated,cultured,and obtained from the umbilical cord tissue of newborn tree shrews by caesarean section.The differentiation abilities of adipogenesis,osteogenesis,and chondrogenesis were detected by three-line differentiation kit.Cell cycle and surface markers were detected by flow cytometry.The second generation of highly active umbilical cord mesenchymal stem cells were transfected with Genechem Green Fluorescent Protein with infection complex values of 100,120,140,160,180,and 200,respectively,to screen the best transfection conditions.After transfection,the fourth generation of highly active umbilical cord mesenchymal stem cells was injected into the tail vein of tree shrews in the elderly treatment group.The young control group and the aged model group were not given special treatment.After 4 months of treatment,the spleen tissue was taken and the structure of the spleen was observed by hematoxylin-eosin staining.β-Galactosidase staining was used to detect the activity of aging-related galactosidase.Immunohistochemical staining was used to detect the expression levels of p21 and p53 proteins.Ki67 and PCNA immunofluorescence staining was used to detect cell proliferation activity.Immunofluorescence staining was used to detect the expression levels of spleen autophagy protein molecules Beclin 1 and APG5L/ATG5.Reactive oxygen species fluorescence staining was used to detect the content of reactive oxygen species in spleen tissue.CD3 immunofluorescence staining was used to detect the change of the proportion of total T lymphocytes.The secretion levels of interleukin 1β and transforming growth factor β1 in spleen were detected by enzyme linked immunosorbent assay.The distribution of highly active umbilical cord mesenchymal stem cells labeled with green fluorescent protein in spleen tissue was observed by DAPI double staining of nucleus. RESULTS AND CONCLUSION:(1)Highly active umbilical cord mesenchymal stem cells grew in a short spindle shape with fish-like growth,with a large proportion of G0/G1 phase,and had the potential to differentiate into adipogenesis,osteogenesis,and chondrogenesis.(2)Multiplicity of infection=140 and transfection for 72 hours were the best conditions for labeling tree shrews highly active umbilical cord mesenchymal stem cells with Genechem Green Fluorescent Protein.(3)Compared with the aged model group,in the aged treatment group,the spleen tissue cells of tree shrews were arranged closely,and the area of white pulp was increased(P<0.01);the boundary between red pulp and white pulp was clear;the proportion of germinal centers did not show statistically significant difference(P>0.05).The activity level of galactosidase related to spleen tissue aging was decreased(P<0.001),and the expression levels of aging protein molecules p21 and p53 were down-regulated(P<0.001).The expression levels of proliferation-related molecules Ki67 and PCNA were up-regulated(P<0.001,P<0.05);expression levels of autophagy-related molecules Beclin 1 and APG5L/ATG5 were up-regulated(P<0.001),and the content of reactive oxygen species decreased(P<0.001),and the proportion of CD3+T cells increased(P<0.05).The secretion level of interleukin 1β in the aging-related secretion phenotype decreased(P<0.001);no significant difference was found in transforming growth factor β1 level(P>0.05).Compared with the young control group,the above indexes were significantly different in the elderly treatment group(P<0.05).(4)Green fluorescent cells labeled with green fluorescent protein were observed in spleen tissue of tree shrews the elderly treatment group by frozen tissue section observation.The results show that intravenous infusion of highly active umbilical cord mesenchymal stem cells can migrate to spleen tissue,inhibit the production of reactive oxygen species,down-regulate the expression of aging-related proteins,induce autophagy,promote cell proliferation,reduce chronic inflammation,and then improve the structure and function of spleen tissue.
8.Panax notoginseng saponins regulate differential miRNA expression in osteoclast exosomes and inhibit ferroptosis in osteoblasts
Hongcheng TAO ; Ping ZENG ; Jinfu LIU ; Zhao TIAN ; Qiang DING ; Chaohui LI ; Jianjie WEI ; Hao LI
Chinese Journal of Tissue Engineering Research 2025;29(19):4011-4021
BACKGROUND:Steroid-induced femoral head necrosis is mostly caused by long-term and extensive use of hormones,but its specific pathogenesis is not yet clear and needs further study. OBJECTIVE:To screen out the differential miRNAs in osteoclast exosomes after the intervention of Panax notoginseng saponins,and on this basis,to further construct an osteogenic-related ferroptosis regulatory network to explore the potential mechanism and research direction of steroid-induced osteonecrosis of the femoral head. METHODS:MTT assay was used to detect the toxic effects of different concentrations of dexamethasone and different mass concentrations of Panax notoginseng saponins on Raw264.7 cell line.Tartrate resistant acid phosphatase staining and TUNEL assay were used to detect the effects of Panax notoginseng saponins on osteoclast inhibition and apoptosis.Exosomes were extracted from cultured osteoclasts with Panax notoginseng saponins intervention.Exosomes from different groups were sequenced to identify differentially expressed miRNAs.CytoScape 3.9.1 was used to construct and visualize the regulatory network between differentially expressed miRNAs and mRNAs.Candidate mRNAs were screened by GO analysis and KEGG analysis.Finally,the differential genes related to ferroptosis were screened out,and the regulatory network of ferroptosis-related genes was constructed. RESULTS AND CONCLUSION:(1)The concentration of dexamethasone(0.1 μmol/L)and Panax notoginseng saponins(1 736.85 μg/mL)suitable for intervention of Raw264.7 cells was determined by MTT assay.(2)Panax notoginseng saponins had an inhibitory effect on osteoclasts and could promote their apoptosis.(3)Totally 20 differentially expressed miRNAs were identified from osteoclast-derived exosome samples,and 11 differentially expressed miRNAs related to osteogenesis were predicted by target mRNAs.The regulatory networks of 4 up-regulated differentially expressed miRNAs corresponding to 155 down-regulated candidate mRNAs and 7 down-regulated differentially expressed miRNAs corresponding to 238 up-regulated candidate mRNAs were constructed.(4)Twenty-four genes related to ferroptosis were screened out from the differential genes.Finally,12 networks were constructed(miR-98-5p/PTGS2,miR-23b-3p/PTGS2,miR-425-5p/TFRC,miR-133a-3p/TFRC,miR-185-5p/TFRC,miR-23b-3p/NFE2L2,miR-23b-3p/LAMP2,miR-98-5p/LAMP2,miR-182-5p/LAMP2,miR-182-5p/TLR4,miR-23b-3p/ZFP36,and miR-182-5p/ZFP36).These results indicate that Panax notoginseng saponins may regulate osteoblast ferroptosis by regulating the expression of miRNAs derived from osteoclast exosomes,thus providing a new idea for the study of the mechanism of steroid-induced femoral head necrosis.
9.Osteogenic/odontogenic differentiation ability of human dental pulp stem cells under photocrosslinked composite hydrogel scaffold
Dujuan YANG ; Mengke CHENG ; Jia LIU
Chinese Journal of Tissue Engineering Research 2025;29(19):4022-4028
BACKGROUND:The composite hydrogel scaffold formed by crosslinking of gelatin-methacryloyl(Gel-MA)and treated dentin matrix(TDM)under a certain proportion of ultraviolet light has good porosity,mechanical properties,swelling properties,and biodegradation rate,which provides a new idea and method for clinical pulp regeneration of young permanent teeth. OBJECTIVE:To explore the effect of Gel-MA/TDM composite hydrogel scaffold with 1:2 mass ratio on the proliferation ability and osteogenic/odontoblast differentiation ability of human dental pulp stem cells. METHODS:The passage 3 dental pulp stem cells were inoculated into the Gel-MA/TDM composite hydrogel scaffold with a mass ratio of 1:2.The proliferation ability of human dental pulp stem cells in the composite hydrogel scaffold was detected by CCK-8 assay.Dental pulp stem cells at passage 3 were cultured in Gel-MA/TDM composite hydrogel scaffold with a mass ratio of 1:2 for osteogenic induction.The formation of mineralized nodules was observed by alkaline phosphatase and alizarin red staining.The gene expression levels of odontogenic factors(dentin matrix protein 1,dentin sialophosphoprotein),and osteogenic factors(osteocalcin,Runt-related transcription factor 2)were detected by RT-PCR. RESULTS AND CONCLUSION:(1)The results of CCK-8 assay showed that the proliferation ability of dental pulp stem cells increased significantly in the first 7 days,and slowed down on day 10.(2)The results of alkaline phosphatase staining and alizarin red staining showed that the alkaline phosphatase activity and the formation of mineralized nodules of dental pulp stem cells in the Gel-MA/TDM composite hydrogel group were stronger than those in Gel-MA hydrogel group(P<0.05).(3)RT-PCR results showed that the gene expression levels of dentin matrix protein 1,dentin sialophosphoprotein,osteocalcin,and Runt-related transcription factor 2 in dental pulp stem cells in Gel-MA/TDM composite hydrogel group were significantly higher than those in Gel-MA hydrogel group(P<0.05).The gene expression level at 14 days was significantly higher than that at 7 days(P<0.05).The results conclude that the dental pulp stem cells cultured on Gel-MA/TDM composite hydrogel scaffolds with a mass ratio of 1:2 exhibit a good proliferation ability,which can strengthen the osteogenic and odontogenic differentiation abilities of dental pulp stem cells.
10.Material basis and action mechanism of drug-containing serum of Modified Erxian Pill inhibiting macrophage pyroptosis
Siyuan LI ; Yuru WANG ; Ye XU ; Di GUO ; Nan NAN ; Yang LIU ; Jie ZHAO ; Huiqin HAO
Chinese Journal of Tissue Engineering Research 2025;29(19):4029-4037
BACKGROUND:Our previous study found that Modified Erxian Pill could alleviate inflammation in collagen-induced arthritis rats,but its mechanism needs to be further verified. OBJECTIVE:To analyze the components absorbed in the blood of Modified Erxian Pill,and observe the effect of the drug-containing serum of Modified Erxian Pill on pyroptosis of J774A.1 macrophages. METHODS:(1)Analysis of components absorbed in the blood of Modified Erxian Pill:Ultra-high performance liquid chromatography-high resolution mass spectrometry was used to detect and identify Modified Erxian Pill and its components absorbed in the blood.(2)Effect of the drug-containing serum of Modified Erxian Pill on pyroptosis of J774A.1 macrophages:Molecular docking technology was used to initially verify the sesquiterpenoids and NLRP3 in components absorbed in the blood of Modified Erxian Pill.J774A.1 macrophages were randomly divided into blank control group,lipopolysaccharide+adenosine triphosphate group,and lipopolysaccharide+adenosine triphosphate+Modified Erxian Pill with low(2.5%),medium(5%),and high(10%)dose groups.The release of lactate dehydrogenase in the cell supernatant of each group was detected according to the kit instructions.The levels of interleukin-1β and interleukin-18 in cell supernatant were detected in each group by ELISA.The cell membrane damage was detected by Hoechst/PI staining.The expression levels of NLRP3,Caspase-1,GSDMD,and GSDMD-N protein in the cells of each group were detected by western blot assay. RESULTS AND CONCLUSION:(1)A total of 32 active components of Modified Erxian Pill were identified,and 21 components entered the blood.The main components into blood included a variety of sesquiterpenoids.(2)Molecular docking results showed that 3-O-Acetyl-13-deoxyphomenone,Incensol oxide,Atractylenolide III,Rupestonic acid,and 3,7-Dihydroxy-9,11-eremophiladien-8-one had good binding activity with NLRP3.(3)Compared with the blank control group,lactate dehydrogenase activity and the expression levels of interleukin-1β and interleukin-18 were significantly increased in cell supernatant of lipopolysaccharide+adenosine triphosphate group(P<0.001).Hoechst/PI staining showed that the number of PI-positive cells was significantly increased.After the intervention of lipopolysaccharide+adenosine triphosphate+Modified Erxian Pill group,all of them showed different degrees of reduction.(4)Compared with the blank control group,NLRP3,Caspase-1,GSDMD,and GSDMD-N protein expression levels were significantly increased in the lipopolysaccharide+adenosine triphosphate group(P<0.05).Compared with lipopolysaccharide+adenosine triphosphate group,the protein expressions of NLRP3,Caspase-1,GSDMD,and GSDMD-N were significantly decreased in the lipopolysaccharide+adenosine triphosphate+Modified Erxian Pill group(P<0.05),and had a certain dose dependence.These findings verify that the drug-containing serum of Modified Erxian Pill may inhibit the pyroptosis of J774A.1 macrophages by regulating the NLRP3/Caspase-1/GSDMD pathway.

Result Analysis
Print
Save
E-mail