1.Mechanism of Zuoguiwan in Inhibiting Osteoclast Activation Induced by Breast Cancer via Regulating p38 MAPK/ERK Signaling Pathway
Jianjiang FU ; Yinlong MEI ; Junchao MA ; Xiaocui ZHU ; Wei WANG ; Hong LYU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(1):1-9
ObjectiveTo investigate the effects of Zuoguiwan on osteoclast activation induced by breast cancer and its mechanism. MethodsTo simulate breast cancer-induced osteoclastic bone metastasis, RAW264.7 cells were cultured in conditioned medium containing 50% supernatant of MDA-MB-231 breast cancer cells. The dosages of Zuoguiwan used in the experiment were sera containing 5% and 10% Zuoguiwan. Tartrate-resistant acid phosphatase (TRAP) staining was used to detect osteoclast activation. Enzyme-linked immunosorbent assay (ELISA) was used to measure Cathepsin K secretion from RAW264.7 cells. Real-time quantitative polymerase chain reaction (PCR) was used to detect the mRNA expression levels of osteocalcin (OCN) and bone sialoprotein (BSP). Immunoprecipitation was employed to detect the interaction between Runt-related transcription factor 2 (Runx2) and core binding factor β subunit (CBF-β). Western blot was used to assess the protein expression of Runx2, phosphorylated Runx2 (p-Runx2), extracellular signal-regulated kinases 1/2 (ERK1/2), p-ERK1/2, p38 mitogen-activated protein kinase (MAPK), p-p38 MAPK, and CBF-β. ResultsCompared with the blank group, the MDA-MB-231 cell supernatant group showed a significant increase in TRAP-positive cell counts and Cathepsin K secretion. Meanwhile, the expression levels of p-Runx2, Runx2-CBF-β interaction, BSP and OCN mRNA, p-p38 MAPK, and p-ERK1/2 proteins were significantly decreased (P<0.01). Compared with the MDA-MB-231 cell supernatant group, Zuoguiwan-containing sera significantly reduced TRAP-positive cell counts and Cathepsin K secretion (P<0.01), significantly increased p-Runx2, BSP and OCN mRNA expression, as well as p-p38 MAPK and p-ERK1/2 protein levels, and promoted the interaction between Runx2 and CBF-β (P<0.01). No significant change in Runx2 expression was observed. Compared to the blank group, the BVD-523 group showed significantly lower expression of p-p38 MAPK and p-ERK1/2 proteins (P<0.01). Compared with the BVD-523 group, both low and high concentration Zuoguiwan-containing sera groups showed significantly higher p-p38 MAPK expression (P<0.01), and the high concentration Zuoguiwan group also exhibited a significant increase in p-ERK1/2 expression (P<0.01), while no statistical difference was found in the low-dose group. ConclusionZuoguiwan inhibits osteoclast activation by inducing phosphorylation of the key transcriptional regulator Runx2 in intra-osteoclast bone formation, and this process is closely associated with the activation of the p38 MAPK/ERK signaling pathway.
2.Mechanism of Shaoyaotang in Modulating MDSCs-related Immunosuppressive Microenvironment in Prevention and Treatment of Colitis-associated Carcinogenesis
Xue CHEN ; Chenglei WANG ; Bingwei YANG ; Haoyu ZHAI ; Ying WU ; Weidong LI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(1):10-19
ObjectiveTo explore the mechanism of Shaoyaotang in the prevention and treatment of colitis-associated carcinogenesis (CAC) based on myeloid-derived suppressor cells (MDSCs)-related immunosuppressive microenvironment. MethodsA total of 140 six-week-old SPF FVB male mice were randomly divided into seven groups: Blank group, Shaoyaotang without model group (7.12 g·kg-1), model group, sulfasalazine group (0.52 g·kg-1), Shaoyaotang low-dose group (3.56 g·kg-1), Shaoyaotang medium-dose group (7.12 g·kg-1) and Shaoyaotang high-dose group (14.24 g·kg-1), with 20 mice in each group. The blank control group and the Shaoyaotang without model group received a single intraperitoneal injection of physiological saline (10 mg·kg-1), while the other five groups were given a single intraperitoneal injection of azoxymethane (AOM) (10 mg·kg-1). After 1 week, the mice were given drinking water containing 2% dextran sulfate sodium (DSS) for 1 week, followed by normal drinking water for 2 weeks. This cycle was repeated three times over a total period of 14 weeks to establish the CAC mouse model. Each group was administered gavage once daily for 2 weeks starting on the 14th day of the experiment, followed by three times a week until the end of the experiment. The body weight of the mice was recorded weekly. Mice were sacrificed on the 28th and 98th days of the experiment. After dissection, the colon length, colon weight, spleen weight, tumor size, and tumor number were measured. Hematoxylin and eosin (HE) staining was used to assess the pathological morphology of colon tumor tissue. Flow cytometry was used to detect MDSCs, regulatory T cells (Tregs), CD4+ T cells, CD8+ T cells, and the CD4+/CD8+ T cell ratio in the spleen. Immunohistochemistry was used to detect the expression levels of programmed cell death protein-1 (PD-1), programmed cell death ligand 1 (PD-L1), phosphorylated AMP-activated protein kinase (p-AMPK), phosphorylated nuclear factor-κB (p-NF-κB), and hypoxia-inducible factor 1α (HIF-1α) in the colon tissue. ResultsOn day 14, compared with the blank group, the body weight of the model group was significantly reduced (P<0.01), reaching its lowest point on day 28 (23.39 ± 0.95 ) g. On days 28 and 98, compared with the blank group, the colon length in the model group was significantly shortened (P<0.01), the colon index significantly increased (P<0.01), the spleen index significantly increased (P<0.01), and the tumor load significantly increased (P<0.01). HE staining showed that in the model group, tumor cells, a large number of inflammatory cell infiltrates, goblet cell disappearance, and crypt loss were observed. In each dose group of Shaoyaotang, the damage to the colonic mucosa, inflammatory cell infiltration, and crypt structure destruction were alleviated. Compared with the model group, the body weight of mice in each dose group of Shaoyaotang increased. On day 98, the colon length was significantly increased (P<0.01), the colon index significantly decreased (P<0.01), the spleen index significantly decreased (P<0.01), and the tumor burden significantly decreased (P<0.01) in each Shaoyaotang dose group. On days 28 and 98, MDSCs and Tregs in the spleen of the medium- and high-dose Shaoyaotang groups were significantly reduced (P<0.01), while CD4+ T cells and the CD4+/CD8+ T cell ratio were significantly increased (P<0.01). The proportion of CD8+ T cells in the spleen and the expression levels of PD-1 and PD-L1 in the colon tissues of mice in each Shaoyaotang dose group were significantly increased to varying degrees (P<0.05, P<0.01). On days 28 and 98, the expression of p-AMPK-positive cells in the colon tissue of the medium- and high-dose Shaoyaotang groups was significantly increased (P<0.01), while the expression of p-NF-κB and HIF-1α was significantly reduced (P<0.01). ConclusionShaoyaotang can regulate MDSC recruitment and modulate the immune function of T lymphocyte subsets to inhibit the occurrence and development of AOM/DSS-induced CAC in mice. The mechanism may be related to the activation of the AMPK/NF-κB/HIF-1α pathway.
3.Mechanism of Action of Kaixinsan in Ameliorating Alzheimer's Disease
Xiaoming HE ; Xiaotong WANG ; Dongyu MIN ; Xinxin WANG ; Meijia CHENG ; Yongming LIU ; Yetao JU ; Yali YANG ; Changbin YUAN ; Changyang YU ; Li ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(1):20-29
ObjectiveTo investigate the mechanism of action of Kaixinsan in the treatment of Alzheimer's disease (AD) based on network pharmacology, molecular docking, and animal experimental validation. MethodsThe Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP) and the Encyclopedia of Traditional Chinese Medicine(ETCM) databases were used to obtain the active ingredients and targets of Kaixinsan. GeneCards, Online Mendelian Inheritance in Man(OMIM), TTD, PharmGKB, and DrugBank databases were used to obtain the relevant targets of AD. The intersection (common targets) of the active ingredient targets of Kaixinsan and the relevant targets of AD was taken, and the network interaction analysis of the common targets was carried out in the STRING database to construct a protein-protein interaction(PPI) network. The CytoNCA plugin within Cytoscape was used to screen out the core targets, and the Metascape platform was used to perform gene ontology(GO) functional enrichment analysis and Kyoto encyclopedia of genes and genomes(KEGG) pathway enrichment analysis. The “drug-active ingredient-target” interaction network was constructed with the help of Cytoscape 3.8.2, and AutoDock Vina was used for molecular docking. Scopolamine (SCOP) was utilized for modeling and injected intraperitoneally once daily. Thirty-two male C57/BL6 mice were randomly divided into blank control (CON) group (0.9% NaCl, n=8), model (SCOP) group (3 mg·kg-1·d-1, n=8), positive control group (3 mg·kg-1·d-1 of SCOP+3 mg·kg-1·d-1 of Donepezil, n=8), and Kaixinsan group (3 mg·kg-1·d-1 of SCOP+6.5 g·kg-1·d-1 of Kaixinsan, n=8). Mice in each group were administered with 0.9% NaCl, Kaixinsan, or Donepezil by gavage twice a day for 14 days. Morris water maze experiment was used to observe the learning memory ability of mice. Hematoxylin-eosin (HE) staining method was used to observe the pathological changes in the CA1 area of the mouse hippocampus. Enzyme linked immunosorbent assay(ELISA) was used to determine the serum acetylcholine (ACh) and acetylcholinesterase (AChE) contents of mice. Western blot method was used to detect the protein expression levels of signal transducer and activator of transcription 3(STAT3) and nuclear transcription factor(NF)-κB p65 in the hippocampus of mice. ResultsA total of 73 active ingredients of Kaixinsan were obtained, and 578 potential targets (common targets) of Kaixinsan for the treatment of AD were screened out. Key active ingredients included kaempferol, gijugliflozin, etc.. Potential core targets were STAT3, NF-κB p65, et al. GO functional enrichment analysis obtained 3 124 biological functions, 254 cellular building blocks, and 461 molecular functions. KEGG pathway enrichment obtained 248 pathways, mainly involving cancer-related pathways, TRP pathway, cyclic adenosine monophosphate(cAMP) pathway, and NF-κB pathway. Molecular docking showed that the binding of the key active ingredients to the target targets was more stable. Morris water maze experiment indicated that Kaixinsan could improve the learning memory ability of SCOP-induced mice. HE staining and ELISA results showed that Kaixinsan had an ameliorating effect on central nerve injury in mice. Western blot test indicated that Kaixinsan had a down-regulating effect on the levels of NF-κB p65 phosphorylation and STAT3 phosphorylation in the hippocampal tissue of mice in the SCOP model. ConclusionKaixinsan can improve the cognitive impairment function in SCOP model mice and may reduce hippocampal neuronal damage and thus play a therapeutic role in the treatment of AD by regulating NF-κB p65, STAT3, and other targets involved in the NF-κB signaling pathway.
4.Mechanism of Xielitang Against Ulcerative Colitis in Mice Based on "Intestinal Flora-bile Acid" Axis
Xiaotian WANG ; Yaning BIAO ; Yixin ZHANG ; Jian CHEN ; Ya GAO ; Yufang ZHANG ; Muqing ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(1):30-38
ObjectiveTo investigate the protective effect of Xielitang on dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) mice and its possible mechanism. MethodsDSS was used to establish UC model. Sixty mice were randomly divided into a normal group, a model group, a sulfasalazine group (0.6 g·kg-1), and low-, medium-, and high-dose Xielitang groups (1.67, 3.34, 6.68 g·kg-1). After treatment for 42 d, the colon length was recorded, and the disease activity index (DAI) score was calculated. Enzyme-linked immunosorbent assay (ELISA) was used to detect the serum levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-10 (IL-10). Hematoxylin-eosin (HE) staining was used to observe the pathomorphological changes of colon. Western blot was used to detect the protein expression of farnesoid X receptor (FXR), small heterodimer partner (SHP), liver receptor homolog-1 (LRH-1), cholesterol 7α-hydroxylase (CYP7A1), and fibroblast growth factor receptor 4 (FGFR4) in liver and FXR, sodium-dependent bile acid transporter (ASBT), and fibroblast growth factor 15 (FGF15) in ileum. 16S rRNA sequencing was used to analyze the intestinal flora. Moreover, ultra-high performance liquid chromatography–tandem mass spectrometry was used to detect the bile acid content. ResultsCompared with the normal group, the model group showed significantly decreased colon length, IL-10 content, α-diversity index, abundance of Firmicutes and Lactobacillus, and content of deoxycholic acid (DCA) and lithocholic acid (LCA) (P<0.01), significantly increased DAI score, IL-6 and TNF-α content, abundance of Bacteroidetes, and the content of cholic acid (CA), chenodeoxycholic acid (CDCA), and taurocholic acid (TCA) (P<0.05, P<0.01), significantly down-regulated protein expression of FXR, SHP, and FGFR4 in liver and FXR, ASBT, and FGF15 in ileum (P<0.01), and significantly up-regulated protein expression of LRH-1 and CYP7A1 in liver (P<0.01). In addition, the structure of colonic mucosa was destroyed, and inflammatory cells infiltrated in the model group. Compared with the model group, Xielitang could significantly increase the colon length, IL-10 content, α-diversity index, the abundance of Firmicutes and Lactobacillus, and DCA and LCA content (P<0.05, P<0.01), decrease DAI score, abundance of Bacteroidetes, and the content of IL-6, TNF-α, CA, CDCA, and TCA (P<0.01), up-regulate the protein expression of FXR, SHP, and FGFR4 in liver and FXR, ASBT, and FGF15 in ileum (P<0.01), and down-regulate the protein expression of LRH-1 and CYP7A1 in liver (P<0.01). The pathological damage of colonic mucosa was obviously alleviated. ConclusionXielitang protects against UC probably by regulating the "intestinal microbiota-bile acid" axis, regulating intestinal flora imbalance, and maintaining bile acid homeostasis.
5.Mechanism of Modified Si Junzitang and Shashen Maidong Tang in Improving Sensitivity of Cisplatin in EGFR-TKI Resistant Lung Adenocarcinoma Cells Based on Aerobic Glycolysis
Yanping WEN ; Yi JIANG ; Liping SHEN ; Haiwei XIAO ; Xiaofeng YANG ; Surui YUAN ; Lingshuang LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(1):39-46
ObjectiveTo investigate the mechanism of modified Si Junzitang and Shashen Maidong Tang [Yiqi Yangyin Jiedu prescription (YQYYJD)] in enhancing the sensitivity of cisplatin in epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI)-resistant lung adenocarcinoma cells based on aerobic glycolysis. MethodsThe effects of different concentrations of YQYYJD (0, 2, 3, 4, 5, 6, 7, 8 g·L-1) and cisplatin (0, 3, 6, 9, 12, 15, 18, 21, 24, 27 mg·L-1) on the proliferation and activity of PC9/GR cells were detected by the cell counting kit-8 (CCK-8) assay after 24 hours of intervention. The half-maximal inhibitory concentration (IC50) for PC9/GR cells was calculated to determine the concentrations used in subsequent experiments. PC9/GR cells were divided into blank group (complete medium), YQYYJD group (5 g·L-1), cisplatin group (12 mg·L-1), and combined group (YQYYJD 5 g·L-1 + cisplatin 12 mg·L-1). After 24 hours of intervention, cell viability was measured using CCK-8 assay. Cell proliferation was assessed by colony formation assay, and cell migration was evaluated by scratch and Transwell assays. Glucose consumption, lactate production, and adenosine triphosphate (ATP) levels were measured by colorimetric assays. The expression levels of glycolysis-related proteins, including hexokinase 2 (HK2), phosphofructokinase P (PFKP), pyruvate kinase M2 (PKM2), lactate dehydrogenase A (LDHA), glucose transporter 1 (GLUT1), and monocarboxylate transporter 4 (MCT4), were determined by Western blot. ResultsBoth YQYYJD and cisplatin inhibited the viability of PC9/GR cells in a concentration-dependent manner. The IC50 of PC9/GR cells for YQYYJD and cisplatin were 5.15 g·L-1 and 12.91 mg·L-1, respectively. In terms of cell proliferation, compared with the blank group, the cell survival rate and the number of colonies formed in the YQYYJD group, cisplatin group, and combined group were significantly decreased (P<0.01). Compared with the YQYYJD and cisplatin groups, the combined group showed a further significant reduction in cell survival rate and colony formation (P<0.01). In terms of cell migration, compared with the blank group, the cell migration rate and the number of cells passing through the Transwell membrane in the YQYYJD group, cisplatin group, and combined group were significantly decreased (P<0.01). Compared with the YQYYJD and cisplatin groups, the combined group exhibited a further significant reduction in cell migration rate and the number of cells passing through the Transwell membrane (P<0.01). In terms of glycolysis, compared with the blank group, glucose consumption, lactate production, and ATP levels in the YQYYJD group, cisplatin group, and combined group were significantly decreased (P<0.01). Compared with the YQYYJD and cisplatin groups, the combined group showed a further significant reduction in glucose consumption, lactate production, and ATP levels (P<0.05). Compared with the blank group, the protein expression levels of HK2, PFKP, PKM2, and LDHA in the YQYYJD, cisplatin, and combined groups were significantly decreased (P<0.01). The combined group showed a further significant reduction in the expression levels of these proteins compared with the YQYYJD and cisplatin groups (P<0.01). No significant differences were observed in the protein expression levels of GLUT1 and MCT4 among the groups. ConclusionYQYYJD can synergistically inhibit the proliferation and migration of PC9/GR cells and enhance their sensitivity to cisplatin. The mechanism may be related to the downregulation of the expression of glycolysis-related rate-limiting enzymes, including HK2, PFKP, PKM2, and LDHA, thereby inhibiting glycolysis.
6.Therapeutic Effect and Mechanism of Shentong Zhuyutang Combined with Dilongtang in Treatment of Lumbar Disc Herniation with Qi Stagnation and Blood Stasis Syndrome
Huangsheng TAN ; Yinbo WANG ; Yong HUANG ; Juyi LAI ; Hualong FENG ; Zhiming LAN ; Yuanfei FU ; Yong JIANG ; Shenghua HE
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(1):47-54
ObjectiveTo observe the clinical efficacy of Shentong Zhuyutang combined with Dilongtang in the treatment of lumbar disc herniation (LDH) with Qi stagnation and blood stasis syndrome, and its effect on nucleus pulposus reabsorption and immune-inflammatory factors, exploring its therapeutic mechanism from the perspective of reabsorption. MethodsA total of 120 patients with LDH from the Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, treated between June 2020 and January 2023, were randomly divided into the control group (52 cases, with 8 dropouts) and the observation group (49 cases, with 11 dropouts) according to a random number table. The control group received routine treatment, while the observation group was treated with Shentong Zhuyutang combined with Dilongtang in addition to routine treatment. Visual Analogue Scale (VAS), Oswestry Disability Index (ODI), Japanese Orthopaedic Association (JOA) score, and traditional Chinese medicine (TCM) syndrome score were measured before treatment and after 3 courses of treatment. Venous blood samples were collected for the determination of serological indexes. MR examination was performed during the 6-month follow-up to calculate the absorption rate. ResultsAfter treatment, both groups showed significant reductions in VAS, ODI, TCM syndrome score, serum tumor necrosis factor (TNF)-α, matrix metalloproteinase (MMP)-9, and vascular endothelial growth factor (VEGF) levels, and a significant increase in JOA score compared with pre-treatment values (P<0.05). Compared with the control group, the observation group showed significantly lower VAS, ODI, TCM syndrome score, serum TNF-α, MMP-9, and VEGF levels, and a significantly higher JOA score (P<0.05). The proportion of nucleus pulposus reabsorption in the observation group was 57.14% (28/49), significantly higher than 21.15% (11/52) in the control group (χ2=6.161, P<0.05). ConclusionShentong Zhuyutang combined with Dilongtang can effectively relieve pain, improve lumbar function, and alleviate TCM clinical symptoms in LDH patients with Qi stagnation and blood stasis syndrome. Imaging findings suggest that the treatment promotes the reabsorption of nucleus pulposus protrusion, while laboratory testing shows reduced serum levels of TNF-α, MMP-9, and VEGF, which contribute to the rehabilitation of patients.
7.Da Chaihutang for Treatment of Sepsis with Yang Syndrome:A Randomized Controlled Trial
Na HUANG ; Guangmei CHEN ; Xingyu KAO ; Zhen YANG ; Weixian XU ; Kang YUAN ; Junna LEI ; Jingli CHEN ; Mingfeng HE
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(1):55-63
ObjectiveTo explore the clinical efficacy and safety of Da Chaihutang (DCH) for the treatment of sepsis with Yang syndrome. MethodsA total of 70 patients suffering from sepsis with Yang syndrome were randomly divided into an observation group and a control group, with 35 cases in each group. They both received standard Western medicine treatment. The observation group was additionally given a dose of DCH, which was boiled into 100 mL and taken twice. The control group was additionally given an equal volume and dosage of warm water. The intervention lasted for three days. The 28-day all-cause mortality and the changes in the following indicators before and after intervention were compared between the two groups, including sequential organ failure assessment (SOFA), acute physiology and chronic health evaluation Ⅱ (APACHE Ⅱ) score,white blood cell (WBC),the percentage of neutrophils (NEU%),C-reactive protein (CRP),procalcitonin (PCT),alanine transaminase (ALT),aspartate transaminase (AST),total bilirubin (TBil),creatinine (Cr),blood urea nitrogen (BUN),acute gastrointestinal injury (AGI) grade,gastrointestinal dysfunction score (GDS),serum intestinal fatty acid-binding protein (iFABP), citrulline (CR),platelet (PLT),prothrombin time(PT),activated partial thromboplastin time (APTT),fibrinogen (Fib),international normalized ratio (INR),and D-dimer (D-D). ResultsThere was no significant difference between the two groups regarding 28-day all-cause mortality. After the intervention,SOFA,WBC,PCT,and Cr were significantly decreased, and PLT was significantly increased in the control group (P<0.05). SOFA,APACHE Ⅱ,NEU%,CRP,PCT,ALT,AST,Cr,BUN,AGI grade,GDS,and serum iFABP and CR were significantly improved in the observation group (P<0.05). After the intervention,APACHE Ⅱ,PCT,AGI grade,GDS,and serum iFABP in the observation group were significantly lower than those in the control group ,while CR and PLT were higher (P<0.05,P<0.01). There were significant differences regarding the gap of SOFA,APACHE Ⅱ,AST,TBil,AGI grade,GDS,iFABP,CR, and PLT between the two groups (P<0.05,P<0.01). There were slight differences regarding PT,APTT,Fib,INR,and D-D between the two groups,which were in the clinical normal range. ConclusionOn the basis of Western medicine, DCH helped to reduce sepsis severity and improved multiple organ dysfunction with high clinical efficacy and safety, but further research on its impact on the prognosis of patients with sepsis is still required.
8.Effect of Serum Containing Buyang Huanwutang on Podocytes Induced by High Glucose in Mice
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(1):64-73
ObjectiveTo observe the effect of serum containing Buyang Huanwutang on podocyte injury induced by high glucose in mice, and to explore its potential mechanism. MethodsMouse podocytes (MPC5) were cultured in vitro, and the optimal intervention concentration and time of serum containing Buyang Huanwutang were screened. Cells were divided into normal group (5.5 mmol·L-1 glucose), isotonic group (5.5 mmol·L-1 glucose+24.5 mmol·L-1 Mannitol), high glucose group (30 mmol·L-1 glucose), blank serum group (30 mmol·L-1 glucose+20% blank serum) and Buyang Huanwutang(30 mmol·L-1 glucose+10% serum containing). FerroOrange fluorescent probe was used to detect the level of iron (Fe2+) in cells. The level of reactive oxygen species (ROS) in cells was detected by Hoechst staining. The levels of glutathione (GSH) and malondialdehyde (MDA) in cells were detected by the kit. Enzyme-linked immunosorbent assay (ELISA) was used to determine the level of 4-hydroxynonenal (4-HNE). Western blot was used to detect Desmin, podocyte hole membrane protein (Nephrin), Podocalyxin, long-chain acyl-CoA synthetase 4(ACSL4), member 11 of solute carrier family 7 (SLC7A11), glutathione peroxidase 4(GPX4), nuclear transcription factor E2-related factor 2(Nrf2) and heme oxygenase -1(HO-1). The mRNA expression levels of Desmin, Nephrin, Podocalyxin, ACSL4, SLC7A11, GPX4, Nrf2 and HO-1 were detected by real-time fluorescence quantitative polymerase chain reaction. ResultsCompared with the normal control group, the expressions of Desmin and ACSL4, the levels of Fe2+ and ROS, and the contents of MDA and 4-HNE in the high glucose group increased significantly, and the expressions of GSH, Nephrin, Podocalyxin, SLC7A11, GPX4, Nrf2 and HO-1 decreased(P<0.05, P<0.01). There was no significant change in the above results in isotonic group. Compared with the high glucose group, the expressions of Desmin and ACSL4, the levels of Fe2+ and ROS, and the contents of MDA and 4-HNE in Buyang Huanwutang-containing serum group and Fer-1 group decreased significantly, and the expressions of GSH, Nephrin, Podocalyxin, SLC7A11, GPX4, Nrf2 and HO-1 increased(P<0.05, P<0.01). There was no significant change in the above results in blank serum group. ConclusionBuyang Huanwutang medicated serum can alleviate podocyte injury induced by high glucose, and its mechanism is related to regulating Nrf2/HO-1 pathway and inhibiting ferroptosis.
9.Exploring Multi-target Effect of Erzhiwan on Improving Myocardial Injury in Ovariectomized Mice Based on Non-targeted Metabolomics
Ying YANG ; Jing HU ; Pei LI ; Ruyuan ZHU ; Zhiguo ZHANG ; Haixia LIU ; Yanjing CHEN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(1):74-84
ObjectiveTo explore the target of Erzhiwan in reducing myocardial injury in ovariectomized mice through non-targeted myocardial metabolomics combined with experimental verification. MethodsOvariectomized mouse model was selected, 40 female C57BL/6 mice were randomly divided into sham operation group, model group, estrogen group(estradiol valerate, 1.3×10-4 g·kg-1), Erzhiwan low and high dose groups(3.12, 9.36 g·kg-1), with 8 mice in each group. Each administration group was given the corresponding dose of Erzhiwan by gavage, and the sham operation group and model group were given equal volume of distilled water by gavage for 12 weeks. Echocardiography was used to detect cardiac function, hematoxylin-eosin(HE) staining was used to observe myocardial morphological changes, and enzyme-linked immunosorbent assay(ELISA) was used to detect the levels of estrogen, N-terminal pro-brain natriuretic peptide(NT-proBNP), hypersensitive troponin T(hs-TnT), total cholesterol(TC), triglyceride(TG), low density lipoprotein cholesterol(LDL-C), high density lipoprotein cholesterol(HDL-C), interleukin(IL)-1β, IL-18 and tumor necrosis factor-α(TNF-α). The non-targeted metabolomics of mouse myocardium were analyzed by ultra performance liquid chromatography-quadrupole-electrostatic field orbital trap high-resolution mass spectrometry(UPLC-Q-Exactive Orbitrap MS), and the differential metabolites and corresponding metabolic pathways were obtained. The mRNA expression levels of phosphatidylinositol 3-kinase(PI3K) and protein kinase B(Akt) in mouse myocardial tissues were detected by real-time fluorescence quantitative polymerase chain reaction(Real-time PCR), and the protein expression levels of PI3K, Akt, phosphorylated(p)-Akt were detected by Western blot. ResultsCompared with the sham operation group, the model group showed abnormal cardiac function, increased myocardial fiber space, cardiomyocyte atrophy, sarcoplasmic aggregation, and occasional dissolution or rupture of muscle fiber, the level of estrogen in the serum was decreased, the levels of NT-proBNP, hs-TnT, IL-1β, IL-18, TNF-α, TG, TC and LDL-C were increased, and the level of HDL-C was decreased(P<0.01). Compared with the model group, Erzhiwan could increase the level of estrogen, improve the abnormal cardiac function, reduce the pathological injury of myocardial tissue, decrease the levels of myocardial injury markers(NT-proBNP, hs-TnT) and inflammatory factors(IL-1β, IL-18, TNF-α), decrease the levels of TG, TC, LDL-C, and increased the level of HDL-C(P<0.01). The results of non-targeted myocardial metabolomics showed that 31 of the 162 differential metabolites between the model group and sham operation group were significantly adjusted after administration of Erzhiwan, which were mainly glycerol phospholipid metabolites. Pathway enrichment results showed that Erzhiwan mainly affected glycerophospholipid metabolic pathway, PI3K-Akt pathway, cyclic guanosine monophosphate(cGMP)-protein kinase G(PKG) pathway and other metabolic pathways. Compared with the sham operation group, the levels of phosphatidylcholine(PC, 11 types) and phosphatidylethanolamine(PE, 5 types) in mouse myocardial tissue of the model group were increased(P<0.05, P<0.01), and the mRNA and protein expressions of PI3K and p-Akt were decreased(P<0.05, P<0.01). Compared with the model group, the levels of PC(11 types) and PE(5 types) were decreased(P<0.05, P<0.01) in myocardial tissue of Erzhiwan group, the mRNA and protein expressions of PI3K and p-Akt were elevated(P<0.01). ConclusionErzhiwan can alleviate the pathological injury of myocardium in ovariectomized mice, improve the abnormal cardiac function, improve lipid metabolism disorder, and reduce the levels of myocardial injury markers and inflammatory factors, which involves a number of signaling and metabolic pathways in the heart, among which glycerophospholipid metabolism pathway and PI3K/Akt pathway may have key roles.
10.Exploring Therapeutic Effect of Yuejuwan on Depressed Mice Based on Lipidomics
Zhentao ZHANG ; Dan SU ; Huizhen LI ; Yonggui SONG ; Huanhua XU ; Meixizi LAI ; Zhifu AI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(1):85-94
ObjectiveTo investigate the effect of Yuejuwan on lipid metabolism in serum, prefrontal cortex and hippocampus of depressed mice based on lipidomics, and to explore the potential pathways for improving lipid metabolism to prevent depression. MethodsSeven-week-old C57BL/6 mice were randomly divided into blank group, model group, Yuejuwan group(3.6 g·kg-1) and fluoxetine group(10 mg·kg-1), and chronic unpredictable mild stress(CUMS) was used to establish the depression model. After 3 weeks of modeling, each administration group was gavaged with the corresponding drug solution according to the dose, and mice in the blank and model groups were given an equal volume of deionised water by gavage, one time/d for 2 weeks. After administration, the antidepressant effect of Yuejuwan was evaluated by neurobehavioral indices such as sucrose preference test, open field test, tail suspension test and forced swimming test. An automatic biochemical analyzer was used to measure contents of total cholesterol(TC), triglyceride(TG), low-density lipoprotein cholesterol(LDL-C), high-density lipoprotein cholesterol(HDL-C), aspartate aminotransferase(AST) and alanine aminotransferase(ALT) in mouse serum. Lipidomic analysis of mouse serum, prefrontal cortex and hippocampus was performed based on ultra-performance liquid chromatography-linear ion trap-electrostatic field orbitrap mass spectrometry(UPLC-LTQ-Orbitrap-MS), and the expression of mammalian target of rapamycin(mTOR), ribosomal protein S6 kinase(S6K), phosphorylation(p)-mTOR, p-S6K in gastric tissues of mice was detected by Western blot. ResultsCompared with the blank group, mice in the model group exhibited significantly reduced sucrose preference rate and center movement time in the open field test(P<0.01), the immobility times in the tail suspension test and forced swimming test were significantly increased(P<0.01), and serum levels of TC, TG, LDL-C, HDL-C, AST and ALT were significantly elevated(P<0.05, P<0.01). Compared with the model group, the Yuejuwan group showed a significant increase in the sucrose preference rate and center movement time in the open field test(P<0.01), the immobility times in the tail suspension test and forced swimming test were significantly reduced(P<0.01), and the serum levels of TC, TG, LDL-C, AST and ALT were significantly decreased(P<0.05, P<0.01). Lipidomic analysis revealed that Yuejuwan had a significant effect on lipid metabolism in serum, prefrontal cortex and hippocampus of depressed mice, and The differential lipid metabolites were mainly enriched in the metabolic pathways of glycerophospholipid metabolism, sphingolipid signaling, and glycosylphosphatidylinositol-anchored protein biosynthesis, among which the glycerophospholipid metabolic pathway was the most significant. Western blot results showed that compared with the blank group, the relative expression levels of p-mTOR/mTOR and p-S6K/S6K in the gastric tissues of mice in the model group were significantly increased(P<0.01). In comparison with the model group, the relative expression levels of p-mTOR/mTOR and p-S6K/S6K in the gastric tissues of mice in the Yuejuwan group were significantly decreased(P<0.01). ConclusionThe intervention of Yuejuwan on lipid metabolism is one of the potential pathways for its antidepressant effect, which may be related to the regulation of mTOR/S6K signaling pathway upstream of lipid metabolism in the gastric tissues.

Result Analysis
Print
Save
E-mail