1.Clinical and Radiological Outcomes of Transarterial Embolization for Adhesive Capsulitis
Keng-Wei LIANG ; Hsuan Yin LIN ; Kai-Lan HSU ; Fa-Chuan KUAN ; Chia-Yu GEAN ; Chien-Kuo WANG ; Wei-Ren SU ; Bow WANG
Korean Journal of Radiology 2025;26(3):230-238
Objective:
To assess the effect of transarterial embolization (TAE) for adhesive capsulitis (AC) by evaluating clinical outcomes and changes in inflammation using magnetic resonance imaging (MRI).
Materials and Methods:
Patients who had undergone TAE between August 2020 and August 2023 for AC refractory to conservative treatments without any invasive procedures for more than 3 months, and had undergone baseline and 3-month post-AC follow-up contrast-enhanced MRI evaluations, were included. A suspension mixture of 500 mg imipenem/cilastatin in 10 mL of iodinated contrast agent was used for TAE. MRI results were analyzed to assess periarticular capsule/ligament inflammation. Clinical assessments included pain scores using the numeric rating scale (NRS) and functional scores using the quick disabilities of the arm, shoulder, and hand (Quick DASH) questionnaire.
Results:
Twenty-five patients (female:male, 14:11; age, 54.9 ± 7.1 years) were included. Significant reductions in average NRS pain scores as well as improvements in Quick DASH scores and range of motion, including anterior flexion and abduction, were observed at 1, 3, and 6 months after TAE (all P < 0.001). MRI analyses revealed that TAE significantly decreased the grades of axillary recess capsule enhancement, rotator interval (RI) capsule T2 signal intensity, and RI capsule enhancement (all P ≤ 0.004).
Conclusion
TAE may be an effective and safe therapeutic approach for AC refractory to conservative treatments, alleviating pain and supporting functional recovery. The observed MRI findings suggest that the effectiveness of TAE for AC may be attributed to the reduction of inflammation and the elimination of angiogenesis.
2.6-Gingerol Induced Apoptosis and Cell Cycle Arrest in Glioma Cells via MnSOD and ERK Phosphorylation Modulation
Sher-Wei LIM ; Wei-Chung CHEN ; Huey-Jiun KO ; Yu-Feng SU ; Chieh-Hsin WU ; Fu-Long HUANG ; Chien-Feng LI ; Cheng Yu TSAI
Biomolecules & Therapeutics 2025;33(1):129-142
6-gingerol, a bioactive compound from ginger, has demonstrated promising anticancer properties across various cancer models by inducing apoptosis and inhibiting cell proliferation and invasion. In this study, we explore its mechanisms against glioblastoma multiforme (GBM), a notably aggressive and treatment-resistant brain tumor. We found that 6-gingerol crosses the blood-brain barrier more effectively than curcumin, enhancing its potential as a therapeutic agent for brain tumors. Our experiments show that 6-gingerol reduces cell proliferation and triggers apoptosis in GBM cell lines by disrupting cellular energy homeostasis. This process involves an increase in mitochondrial reactive oxygen species (mtROS) and a decrease in mitochondrial membrane potential, primarily due to the downregulation of manganese superoxide dismutase (MnSOD). Additionally, 6-gingerol reduces ERK phosphorylation by inhibiting EGFR and RAF, leading to G1 phase cell cycle arrest. These findings indicate that 6-gingerol promotes cell death in GBM cells by modulating MnSOD and ROS levels and arresting the cell cycle through the ERFR-RAF-1/MEK/ ERK signaling pathway, highlighting its potential as a therapeutic agent for GBM and setting the stage for future clinical research.
5.Clinical and Radiological Outcomes of Transarterial Embolization for Adhesive Capsulitis
Keng-Wei LIANG ; Hsuan Yin LIN ; Kai-Lan HSU ; Fa-Chuan KUAN ; Chia-Yu GEAN ; Chien-Kuo WANG ; Wei-Ren SU ; Bow WANG
Korean Journal of Radiology 2025;26(3):230-238
Objective:
To assess the effect of transarterial embolization (TAE) for adhesive capsulitis (AC) by evaluating clinical outcomes and changes in inflammation using magnetic resonance imaging (MRI).
Materials and Methods:
Patients who had undergone TAE between August 2020 and August 2023 for AC refractory to conservative treatments without any invasive procedures for more than 3 months, and had undergone baseline and 3-month post-AC follow-up contrast-enhanced MRI evaluations, were included. A suspension mixture of 500 mg imipenem/cilastatin in 10 mL of iodinated contrast agent was used for TAE. MRI results were analyzed to assess periarticular capsule/ligament inflammation. Clinical assessments included pain scores using the numeric rating scale (NRS) and functional scores using the quick disabilities of the arm, shoulder, and hand (Quick DASH) questionnaire.
Results:
Twenty-five patients (female:male, 14:11; age, 54.9 ± 7.1 years) were included. Significant reductions in average NRS pain scores as well as improvements in Quick DASH scores and range of motion, including anterior flexion and abduction, were observed at 1, 3, and 6 months after TAE (all P < 0.001). MRI analyses revealed that TAE significantly decreased the grades of axillary recess capsule enhancement, rotator interval (RI) capsule T2 signal intensity, and RI capsule enhancement (all P ≤ 0.004).
Conclusion
TAE may be an effective and safe therapeutic approach for AC refractory to conservative treatments, alleviating pain and supporting functional recovery. The observed MRI findings suggest that the effectiveness of TAE for AC may be attributed to the reduction of inflammation and the elimination of angiogenesis.
6.Clinical and Radiological Outcomes of Transarterial Embolization for Adhesive Capsulitis
Keng-Wei LIANG ; Hsuan Yin LIN ; Kai-Lan HSU ; Fa-Chuan KUAN ; Chia-Yu GEAN ; Chien-Kuo WANG ; Wei-Ren SU ; Bow WANG
Korean Journal of Radiology 2025;26(3):230-238
Objective:
To assess the effect of transarterial embolization (TAE) for adhesive capsulitis (AC) by evaluating clinical outcomes and changes in inflammation using magnetic resonance imaging (MRI).
Materials and Methods:
Patients who had undergone TAE between August 2020 and August 2023 for AC refractory to conservative treatments without any invasive procedures for more than 3 months, and had undergone baseline and 3-month post-AC follow-up contrast-enhanced MRI evaluations, were included. A suspension mixture of 500 mg imipenem/cilastatin in 10 mL of iodinated contrast agent was used for TAE. MRI results were analyzed to assess periarticular capsule/ligament inflammation. Clinical assessments included pain scores using the numeric rating scale (NRS) and functional scores using the quick disabilities of the arm, shoulder, and hand (Quick DASH) questionnaire.
Results:
Twenty-five patients (female:male, 14:11; age, 54.9 ± 7.1 years) were included. Significant reductions in average NRS pain scores as well as improvements in Quick DASH scores and range of motion, including anterior flexion and abduction, were observed at 1, 3, and 6 months after TAE (all P < 0.001). MRI analyses revealed that TAE significantly decreased the grades of axillary recess capsule enhancement, rotator interval (RI) capsule T2 signal intensity, and RI capsule enhancement (all P ≤ 0.004).
Conclusion
TAE may be an effective and safe therapeutic approach for AC refractory to conservative treatments, alleviating pain and supporting functional recovery. The observed MRI findings suggest that the effectiveness of TAE for AC may be attributed to the reduction of inflammation and the elimination of angiogenesis.
7.6-Gingerol Induced Apoptosis and Cell Cycle Arrest in Glioma Cells via MnSOD and ERK Phosphorylation Modulation
Sher-Wei LIM ; Wei-Chung CHEN ; Huey-Jiun KO ; Yu-Feng SU ; Chieh-Hsin WU ; Fu-Long HUANG ; Chien-Feng LI ; Cheng Yu TSAI
Biomolecules & Therapeutics 2025;33(1):129-142
6-gingerol, a bioactive compound from ginger, has demonstrated promising anticancer properties across various cancer models by inducing apoptosis and inhibiting cell proliferation and invasion. In this study, we explore its mechanisms against glioblastoma multiforme (GBM), a notably aggressive and treatment-resistant brain tumor. We found that 6-gingerol crosses the blood-brain barrier more effectively than curcumin, enhancing its potential as a therapeutic agent for brain tumors. Our experiments show that 6-gingerol reduces cell proliferation and triggers apoptosis in GBM cell lines by disrupting cellular energy homeostasis. This process involves an increase in mitochondrial reactive oxygen species (mtROS) and a decrease in mitochondrial membrane potential, primarily due to the downregulation of manganese superoxide dismutase (MnSOD). Additionally, 6-gingerol reduces ERK phosphorylation by inhibiting EGFR and RAF, leading to G1 phase cell cycle arrest. These findings indicate that 6-gingerol promotes cell death in GBM cells by modulating MnSOD and ROS levels and arresting the cell cycle through the ERFR-RAF-1/MEK/ ERK signaling pathway, highlighting its potential as a therapeutic agent for GBM and setting the stage for future clinical research.
10.Clinical and Radiological Outcomes of Transarterial Embolization for Adhesive Capsulitis
Keng-Wei LIANG ; Hsuan Yin LIN ; Kai-Lan HSU ; Fa-Chuan KUAN ; Chia-Yu GEAN ; Chien-Kuo WANG ; Wei-Ren SU ; Bow WANG
Korean Journal of Radiology 2025;26(3):230-238
Objective:
To assess the effect of transarterial embolization (TAE) for adhesive capsulitis (AC) by evaluating clinical outcomes and changes in inflammation using magnetic resonance imaging (MRI).
Materials and Methods:
Patients who had undergone TAE between August 2020 and August 2023 for AC refractory to conservative treatments without any invasive procedures for more than 3 months, and had undergone baseline and 3-month post-AC follow-up contrast-enhanced MRI evaluations, were included. A suspension mixture of 500 mg imipenem/cilastatin in 10 mL of iodinated contrast agent was used for TAE. MRI results were analyzed to assess periarticular capsule/ligament inflammation. Clinical assessments included pain scores using the numeric rating scale (NRS) and functional scores using the quick disabilities of the arm, shoulder, and hand (Quick DASH) questionnaire.
Results:
Twenty-five patients (female:male, 14:11; age, 54.9 ± 7.1 years) were included. Significant reductions in average NRS pain scores as well as improvements in Quick DASH scores and range of motion, including anterior flexion and abduction, were observed at 1, 3, and 6 months after TAE (all P < 0.001). MRI analyses revealed that TAE significantly decreased the grades of axillary recess capsule enhancement, rotator interval (RI) capsule T2 signal intensity, and RI capsule enhancement (all P ≤ 0.004).
Conclusion
TAE may be an effective and safe therapeutic approach for AC refractory to conservative treatments, alleviating pain and supporting functional recovery. The observed MRI findings suggest that the effectiveness of TAE for AC may be attributed to the reduction of inflammation and the elimination of angiogenesis.

Result Analysis
Print
Save
E-mail