1.Lentivirus Delivery of the Short Hairpin RNA Targeting NDV P Gene Inhibits Production of the Newcastle Disease Virus in Chicken Embryo Fibroblasts and Chicken Embryos.
Shaohua YANG ; Chuantian XU ; Lin ZHANG ; Yanyan HUANG ; Qinghua HUANG ; Beixia HU ; Xiumei ZHANG
Chinese Journal of Virology 2016;32(1):39-45
		                        		
		                        			
		                        			Small interfering ribonucleic acid (siRNA)-induced RNA degradation can inhibit viral infection, and has been investigated extensively for its efficacy as antiviral therapy. The potential therapeutic role of lentiviral-mediated short hairpin ribonucleic acid (shRNA) to Newcastle disease virus (NDV) replication in vivo has been explored less often. We constructed two recombinant lentiviral vectors containing shRNA against the phosphoprotein (P) of the NDV, RNAi-341 and RNAi-671. Recombinant shRNA lentivirus vectors were co-transfected into 293T cells, along with helper plasmids, to package the recombinant shRNA lentivirus. Lentivirus-based shRNAs were titrated and transduced into NDV-susceptible chicken embryo fibroblasts (CEFs) and chick embryos. Antiviral activity against the NDV strain was evaluated by virus titration and real-time reverse transcription-polymerase chain reaction. RNAi-341 and RNAi-671 strongly suppressed transient expression of a FLAG-tagged P fusion protein in 293T cells. RNAi-341 and RNAi-671 NDV reduced virus titers by 66.6-fold and 30.6-fold, respectively, in CEFs 16 h after infection. RNAi-341 and RNAi-671 reduced virus titers in specific pathogen-free chick embryos by 99% and 98%, respectively, 48 h after infection. Both shRNAs inhibited accumulation of not only P-gene mRNA, but also nucleocapsid, M-, F-, HN-, and L-gene mRNA. RNAi-341 silenced P-gene mRNA more potently than RNAi-671. These results suggest that shRNAs silencing the P gene had substantial antiviral properties and inhibited NDV replication in CEFs and chick embryos.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Chick Embryo
		                        			;
		                        		
		                        			Chickens
		                        			;
		                        		
		                        			Down-Regulation
		                        			;
		                        		
		                        			Fibroblasts
		                        			;
		                        		
		                        			virology
		                        			;
		                        		
		                        			Gene Targeting
		                        			;
		                        		
		                        			Lentivirus
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Newcastle Disease
		                        			;
		                        		
		                        			virology
		                        			;
		                        		
		                        			Newcastle disease virus
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			physiology
		                        			;
		                        		
		                        			Phosphoproteins
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Poultry Diseases
		                        			;
		                        		
		                        			virology
		                        			;
		                        		
		                        			RNA Interference
		                        			;
		                        		
		                        			RNA, Small Interfering
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Viral Proteins
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Virus Replication
		                        			
		                        		
		                        	
2.Bear bile powder inhibits angiogenesis in vivo and in vitro.
Jin-yan ZHAO ; Wei LIN ; Qun-chuan ZHUANG ; Xiao-yong ZHONG ; Jun PENG ; Zhen-feng HONG
Chinese journal of integrative medicine 2015;21(5):369-375
OBJECTIVETo evaluate the effect of bear bile powder (BBP) on angiogenesis, and investigate the underlying molecular mechanisms.
METHODSA chick embryo chorioallantoic membrane (CAM) assay was used to evaluate the angiogensis in vivo. Human umbilical vein endothelial cells (HUVECs) were treated with 0, 0.25, 0.5, 0.75, and 1.0 mg/mL of BBP for 24, 48 and 72 h, respectively. The 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was performed to determine the viability of HUVECs. Cell cycle progression of HUVECs was examined by fluorescence-activated cell sorting (FACS) analysis with propidium iodide staining. HUVEC migration was determined by wound healing method. An ECMatrix gel system was used to evaluate the tube formation of HUVECs. The mRNA and protein expression of vascular endothelial growth factor (VEGF)-A in both HUVECs and HepG2 human cells were examined by reverse transcription-polymerase chain reaction and enzyme linked immunosorbent assay, respectively.
RESULTSCompared with the untreated group, BBP inhibited angiogenesis in vivo in the CAM model (P< 0.01). In addition, treatment with 0.25-1 mg/mL of BBP for 24, 48, or 72 h respectively reduced cell viability by 14%-27%, 29%-69% and 33%-91%, compared with the untreated control cells (P< 0.01). Additionally, BBP inhibited the proliferation of HUVECs via blocking the cell cycle G to S progression, compared with the S phase of untreated cells 48.05%± 5.00%, 0.25-0.75 mg/mL BBP reduced S phase to 40.38%± 5.30%, 36.54± 4.50% and 32.13± 3.50%, respectively (Pglt; 0.05). Moreover, BBP inhibited the migration and tube formation of HUVECs, compared with the tube length of untreated cells 100%± 12%, 0.25-0.75 mg/mL BBP reduced the tube length to 62%± 9%, 43%± 5% and 17%± 3%, respectively (p< 0.01). Furthermore, BBP treatment down-regulated the mRNA and protein expression levels of VEGF-A in both HepG2 cells and HUVECs.
CONCLUSIONBBP could inhibit the angiogenesis by reducing VEGF-A expression, which may, in part, explain its anti-tumor activity.
Animals ; Bile ; chemistry ; Cell Cycle ; Cell Movement ; Cell Proliferation ; Chick Embryo ; Chorioallantoic Membrane ; blood supply ; Gene Expression Regulation ; Hep G2 Cells ; Human Umbilical Vein Endothelial Cells ; cytology ; Humans ; Neovascularization, Physiologic ; Powders ; RNA, Messenger ; genetics ; metabolism ; Ursidae ; Vascular Endothelial Growth Factor A ; genetics ; metabolism
3.Rescue of the recombinant infectious bronchitis virus with the ectodomain region of H120 spike glycoprotein.
Yan-quan WEI ; Hui-chen GUO ; Hai-ming WANG ; De-hui SUN ; Shi-chong HAN ; Shi-qi SUN
Chinese Journal of Virology 2014;30(6):668-674
		                        		
		                        			
		                        			To explore the expression potential of heterogeneous genes using the backbone of infectious bronchitis virus (IBV) Beaudette strain, the ectodomain region of the Spike gene (1,302 bp) of IBV H120 strain was amplified by RT-PCR and replaced into the corresponding location of the IBV Beaudette strain full-length cDNA. This recombinant was designated as BeauR-H120(S1). BeauR-H120(S1) was directly used as the DNA template for the transcription of viral genomic RNA in vitro. Then, the transcription product was transfected into Vero cells by electroporation. At 48 h post-transfection, the transfected Vero cells were harvested, and passaging continued. A syncytium was not observed until the recombinant virus had passed through four passages. The presence of rBeau-H120(S1) was verified by the detection of the replaced ectodomain region of the H120 Spike gene using RT-PCR. Western blot analysis of rBeau-H120 (S1)-infected Vero cell lysates demonstrated that the nucleocapsid (N) protein was expressed, which implied that rBeau-H120(S1) could propagate in Vero cells. The TCIDs0 and EIDs0 data demonstrated that the titer levels of rBeau-H120(S1) reached 10(590+/-0.22)TCID50/mL and 10(6.13+/-0.23)EID50/mL in Vero cells and 9-day-old SPF chicken embryos, respectively. Protection studies showed that the percentage of antibody-positive chickens, which were vaccinated with rBeau-H120(S1) at 7 days after hatching, rose to 90% at 21 days post-inoculation. Inoculation provided an 85% rate of immune protection against a challenge of the virulent IBV M41 strain (103EID50/chicken). This recombinant virus constructed using reverse genetic techniques could be further developed as a novel genetic engineering vaccine against infectious bronchitis.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Cercopithecus aethiops
		                        			;
		                        		
		                        			Chick Embryo
		                        			;
		                        		
		                        			Chickens
		                        			;
		                        		
		                        			Coronavirus Infections
		                        			;
		                        		
		                        			veterinary
		                        			;
		                        		
		                        			virology
		                        			;
		                        		
		                        			Infectious bronchitis virus
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			growth & development
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Poultry Diseases
		                        			;
		                        		
		                        			virology
		                        			;
		                        		
		                        			Protein Structure, Tertiary
		                        			;
		                        		
		                        			Spike Glycoprotein, Coronavirus
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Transfection
		                        			;
		                        		
		                        			Vero Cells
		                        			
		                        		
		                        	
4.Antitumor efficacy of the recombinant Newcastle disease virus rNDV-IL15 on melanoma models.
Ze-Shan NIU ; Fu-Liang BAI ; Tian SUN ; Hui TIAN ; Jie-Chao YIN ; Hong-Wei CAO ; Dan YU ; Gui-You TIAN ; Yun-Zhou WU ; De-Shan LI ; Gui-Ping REN
Acta Pharmaceutica Sinica 2014;49(3):310-315
		                        		
		                        			
		                        			In order to enhance the antitumor efficacy of recombinant Newcastle disease virus, rNDV-IL15 was rescued in this study. Recombinant plasmid prNDV-IL15 was constructed, and BHK21 cells were transfected with the recombinant plasmid. Finally, the recombinant Newcastle disease virus rNDV-IL15 was successfully rescued. The growth curves of these two recombinant viruses were determined. Murine melanoma B16F10 cells were infected with rNDV-IL15 at MOI of 0.1, and the expression level of IL15 in the supernatant was detected by ELISA. The antitumor efficacy of rNDV-IL15 and rNDV was compared in vitro and in vivo. Results showed that prNDV-IL15 was constructed and recombinant virus rNDV-IL15 was successfully rescued. The growth curve of rNDV-IL15 showed that the growth of rNDV-IL15 had not been changed after insertion of IL15 gene. Results showed that there was high level of IL15 expression in the supernatant of rNDV-IL5-infected B16F10 cells (1 044.3 +/- 27.7 ng x mL(-1)). rNDV-IL15 and rNDV significantly inhibited the growth of B16F10 cells in vitro in a time-dependent manner. However, there was no significant difference between them. In animal experiments, rNDV-IL15 efficiently suppressed tumor growth in vivo when compared with rNDV, and the difference was statistically significant. The results suggested that rNDV-IL15 is a more effective antitumor agent.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Body Weight
		                        			;
		                        		
		                        			Cell Line, Tumor
		                        			;
		                        		
		                        			Cell Proliferation
		                        			;
		                        		
		                        			Chick Embryo
		                        			;
		                        		
		                        			Cytotoxicity, Immunologic
		                        			;
		                        		
		                        			Female
		                        			;
		                        		
		                        			Genetic Therapy
		                        			;
		                        		
		                        			Interleukin-15
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Melanoma, Experimental
		                        			;
		                        		
		                        			pathology
		                        			;
		                        		
		                        			therapy
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Neoplasm Transplantation
		                        			;
		                        		
		                        			Newcastle disease virus
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			Plasmids
		                        			;
		                        		
		                        			Recombinant Proteins
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Transfection
		                        			;
		                        		
		                        			Tumor Burden
		                        			
		                        		
		                        	
5.H5N1 Avian Influenza Pre-pandemic Vaccine Strains in China.
Hong BO ; Li Bo DONG ; Ye ZHANG ; Jie DONG ; Shu Mei ZOU ; Rong Bao GAO ; Da Yan WANG ; Yue Long SHU ;
Biomedical and Environmental Sciences 2014;27(10):763-769
OBJECTIVETo prepare the 4 candidate vaccine strains of H5N1 avian influenza virus isolated in China.
METHODSRecombinant viruses were rescued using reverse genetics. Neuraminidase (NA) and hemagglutinin (HA) segments of the A/Xinjiang/1/2006, A/Guangxi/1/2009, A/Hubei/1/2010, and A/Guangdong/1/2011 viruses were amplified by RT-PCR. Multibasic amino acid cleavage site of HA was removed and ligated into the pCIpolI vector for virus rescue. The recombinant viruses were evaluated by trypsin dependent assays. Their embryonate survival and antigenicity were compared with those of the respective wild-type viruses.
RESULTSThe 4 recombinant viruses showed similar antigenicity compared with wild-type viruses, chicken embryo survival and trypsin-dependent characteristics.
CONCLUSIONThe 4 recombinant viruses rescued using reverse genetics meet the criteria for classification of low pathogenic avian influenza strains, thus supporting the use of them for the development of seeds and production of pre-pandemic vaccines.
Animals ; Chick Embryo ; Chickens ; China ; Hemagglutinin Glycoproteins, Influenza Virus ; genetics ; metabolism ; Influenza A Virus, H5N1 Subtype ; immunology ; Influenza Vaccines ; immunology ; Influenza in Birds ; prevention & control ; virology ; Neuraminidase ; genetics ; metabolism ; Reverse Transcriptase Polymerase Chain Reaction ; Vaccines, Synthetic ; immunology
6.Antitumor activity of the recombinant rClone30-CD/5-FC system.
Zheng LU ; Tian-Yuan ZHANG ; Miao-Miao HAN ; Fu-Liang BAI ; Wei WU ; Gui-You TIAN ; Gui-Ping REN ; De-Shan LI
Acta Pharmaceutica Sinica 2013;48(2):261-268
		                        		
		                        			
		                        			5-Flucytosine (5-FC) could be changed to 5-fluorouracil (5-FU) by cytosine deaminase (CD), the latter is able to kill cancer cells. However, there is no efficient method to deliver the CD gene into the tumor cells, which hampers the application of the suicide gene system. In this experiment, for the first time, the NDV has been utilized as a vector to deliver the CD gene into the cancer cells, the virus can infect the cancer cells specifically, replicate and assemble, while the cytosine deaminase is expressed. Then the CD converts the prodrug 5-FC into 5-FU to achieve the purpose of inhibiting tumor. Firstly, the whole genome of E. coli JM109 was extracted, and the CD gene was obtained by cloning method. Then the CD and IRES-EGFP were ligated into the pEE12.4 expression vector to become a recombinant pEE12.4IE-CD eukaryotic expression plasmid. The human liver cancer cells were transfected with the plasmid. The cells were treated with different concentrations of 5-FC, MTT method was used to determine the killing effect of CD/5-FC system on the human liver cancer cells. The cell deaths were 18.07%, 42.98% and 62.20% respectively when the concentrations of prodrug were at 10, 20 and 30 mmol x L(-1). In 5-FC acute toxicity experiment, Kunming mice were injected with different concentrations of 5-FC at intervals of 1:0.5. The LD50 of 5-FC through iv injection was determined by improved Karber's method, the LD50 was 507 mg x kg(-1) and the 95% confidence limit was 374-695 mg x kg(-1). According to the maximum LD0 dose of the LD50, the maximum safe dose was 200 mg x kg(-1). Body weight and clinic symptoms of the experimental animals were observed. These results laid the foundation to verify the antitumor effect and safety of CD/5-FC system in animal models. The CD gene was ligated into the NDV (rClone30) carrier, then the tumor-bearing animal was established to perform the tumor inhibiting experiment. The result showed that the recombinant rClone30-CD/5-FC system has a high antitumor activity in vivo. To summarize, CD gene has been cloned and its bioactivity has been confirmed in the mammalian cells. It is the first time in this study to utilize the recombinant NDV to deliver the CD gene into the tumor cells; our result proves the rClone30-CD/5-FC system is a potential method for cancer therapy.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Antimetabolites, Antineoplastic
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Cell Death
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Chick Embryo
		                        			;
		                        		
		                        			Cytosine Deaminase
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Escherichia coli
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Flucytosine
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Fluorouracil
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Genetic Vectors
		                        			;
		                        		
		                        			Hep G2 Cells
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Lethal Dose 50
		                        			;
		                        		
		                        			Liver Neoplasms, Experimental
		                        			;
		                        		
		                        			pathology
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Newcastle disease virus
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			Plasmids
		                        			;
		                        		
		                        			Recombinant Proteins
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Transfection
		                        			;
		                        		
		                        			Tumor Burden
		                        			;
		                        		
		                        			drug effects
		                        			
		                        		
		                        	
7.Construction and biological characteristics of H5N1 avian influenza viruses with different patterns of the glycosylation sites in HA protein.
Xiao-jian ZHANG ; Yan-fang LI ; Li-ping XIONG ; Su-juan CHEN ; Da-xin PENG ; Xiu-fan LIU
Chinese Journal of Virology 2013;29(5):495-499
		                        		
		                        			
		                        			The distribution of glycosylation sites in HA proteins was various among H5 subtype avian influenza viruses (AIVs), however, the role of glycosylation sites to the virus is still unclear. In this study, avian influenza H5N1 viruses with deletion of the glycosylation sites in HA were constructed and rescued by site direct mutation and reverse genetic method, and their biological characteristics and virulence were determined. The result showed that the mutants were confirmed to be corrected by HA gene sequencing and Western blot analysis. The EID50 and TCID50 tested in SPF chick embryo and MDCK cells of a mutant rSdelta158 with deletion of glycosylation site at position 158 were slight lower than that of wild type rescued virus rS, and the plaque diameter of rSdelta158 was significant smaller than that of rS. The EID50 and TCID50 of mutants rSdelta169 and rSdelta290 with deletion of glycosylation sites at position 169 and 290, respectively, were slight higher than that of wild type rescued virus rS, the plaque diameters of rSdelta169 and rSdelta290 were similar as that of rS, but the plaque numbers of rSdelta169 and rSdelta290 were 10-fold higher than that to rS. On the other hand, the rSdelta158, rSdelta169 and rSdelta290 showed similar growth rate in chicken embryo fibroblast as rS. All viruses remained high pathogenicity to SPF chickens. Therefore, the growth of AIV can be affected by changes of glycosylation sites in HA protein, by which the effect is variable in different cells.
		                        		
		                        		
		                        		
		                        			Amino Acid Motifs
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Cell Line
		                        			;
		                        		
		                        			Chick Embryo
		                        			;
		                        		
		                        			Chickens
		                        			;
		                        		
		                        			Glycosylation
		                        			;
		                        		
		                        			Hemagglutinin Glycoproteins, Influenza Virus
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Influenza A Virus, H5N1 Subtype
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			growth & development
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Influenza in Birds
		                        			;
		                        		
		                        			virology
		                        			;
		                        		
		                        			Poultry Diseases
		                        			;
		                        		
		                        			virology
		                        			
		                        		
		                        	
8.Evaluation of modified vaccinia virus Ankara expressing VP2 protein of infectious bursal disease virus as an immunogen in chickens.
Flavia Adriana ZANETTI ; Maria Paula Del Medico ZAJAC ; Oscar Alberto TABOGA ; Gabriela CALAMANTE
Journal of Veterinary Science 2012;13(2):199-201
		                        		
		                        			
		                        			A recombinant modified vaccinia Ankara (MVA) virus expressing mature viral protein 2 (VP2) of the infectious bursal disease virus (IBDV) was constructed to develop MVA-based vaccines for poultry. We demonstrated that this recombinant virus was able to induce a specific immune response by observing the production of anti-IBDV-seroneutralizing antibodies in specific pathogen-free chickens. Besides, as the epitopes of VP2 responsible to induce IBDV-neutralizing antibodies are discontinuous, our results suggest that VP2 protein expressed from MVA-VP2 maintained the correct conformational structure. To our knowledge, this is the first report on the usefulness of MVA-based vectors for developing recombinant vaccines for poultry.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Antibodies, Viral
		                        			;
		                        		
		                        			Birnaviridae Infections/prevention & control/*veterinary
		                        			;
		                        		
		                        			Cells, Cultured
		                        			;
		                        		
		                        			Chick Embryo
		                        			;
		                        		
		                        			Chickens
		                        			;
		                        		
		                        			Fibroblasts/metabolism
		                        			;
		                        		
		                        			Infectious bursal disease virus/*immunology
		                        			;
		                        		
		                        			Poultry Diseases/*prevention & control/virology
		                        			;
		                        		
		                        			Specific Pathogen-Free Organisms
		                        			;
		                        		
		                        			Vaccinia virus/*genetics/immunology/metabolism
		                        			;
		                        		
		                        			Viral Structural Proteins/genetics/*immunology/metabolism
		                        			;
		                        		
		                        			Viral Vaccines/*immunology
		                        			
		                        		
		                        	
9.Effects of Pien Tze Huang on angiogenesis in vivo and in vitro.
A-ling SHEN ; Fei HONG ; Li-ya LIU ; Jiu-mao LIN ; Qun-chuan ZHUANG ; Zhen-feng HONG ; Jun PENG
Chinese journal of integrative medicine 2012;18(6):431-436
OBJECTIVETo investigate the anti-angiogenic effects of Pien Tze Huang in vivo and in vitro.
METHODSHuman umbilical vein endothelial cells (HUVECs) were treated with 0 mg/mL, 0.25 mg/mL, 0.5 mg/mL, and 1 mg/mL of PZH for 24 h, 48 h and 72 h, respectively. Chicken embryo chorioallantoic membrane (CAM) model was used to evaluate in vivo angiogenesis. An ECMatrix gel system was used to evaluate in vitro angiogenesis by examining the tube formation of HUVECs. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was performed to determine HUVEC viability. Cell density of HUVECs was observed by phase-contrast microscopy. HUVEC migration was determined by wound healing method. The mRNA and protein expression of vascular endothelial growth factor A (VEGF-A) and basic fibroblast growth factor (bFGF) in both HUVEC and human colon adenocarcinoma cells (HT-29) was examined by reverse transcription polymerase chain reaction (RT-PCR) and enzyme linked immune sorbent assay (ELISA), respectively.
RESULTSPZH treatment significantly reduced the total number of blood vessels compared with the untreated control in the chicken embryos and resulted in a significant decrease in capillary tube formation and cell density of HUVECs (P<0.05). In addition, treatment with 0.25-1 mg/mL of PZH for 24 h, 48 h, and 72 h respectively reduced cell viability by 9%-52%, 24%-87% or 25%-87%, compared with the untreated control cells (P<0.05). Moreover, PZH treatment decreased the migration of HUVECs. Furthermore, PZH dose-dependently suppressed the expression of VEGF-A and bFGF on both mRNA and protein levels (P<0.05).
CONCLUSIONPZH could inhibit angiogenesis in vivo in CAM model and in vitro on HUVECs, suggesting that inhibiting tumor angiogenesis might be one of the mechanisms by which PZH treats cancer.
Animals ; Cell Movement ; drug effects ; Cell Proliferation ; drug effects ; Cell Survival ; drug effects ; Chick Embryo ; Chorioallantoic Membrane ; blood supply ; drug effects ; Drugs, Chinese Herbal ; pharmacology ; Fibroblast Growth Factor 2 ; genetics ; metabolism ; Gene Expression Regulation ; drug effects ; HT29 Cells ; Human Umbilical Vein Endothelial Cells ; cytology ; drug effects ; metabolism ; Humans ; Neovascularization, Physiologic ; drug effects ; genetics ; RNA, Messenger ; genetics ; metabolism ; Vascular Endothelial Growth Factor A ; genetics ; metabolism
10.Wogonin inhibits IGF-1-stimulated cell growth and estrogen receptor α expression in breast adenocarcinoma cell and angiogenesis of chick chorioallantoic membrane.
Xing MA ; Kun-Peng XIE ; Fei SHANG ; Hong-Nan HUO ; Li-Meng WANG ; Ming-Jie XIE
Acta Physiologica Sinica 2012;64(2):207-212
		                        		
		                        			
		                        			The aim of the present study was to investigate the involvements of insulin-like growth factor-1 (IGF-1) and estrogen receptor α (ERα) in the inhibitory effect of wogonin on the breast adenocarcinoma growth. Moreover, the effect of wogonin on the angiogenesis of chick chorioallantoic membrane (CAM) was also investigated. MCF-7 cells (human breast adenocarcinoma cell line) were subjected to several drugs, including IGF-1, wogonin and ER inhibitor ICI182780, alone or in combination. MTT assay was used to detect breast cancer proliferation. Western blot was used to analyze ERα and p-Akt expression levels. CAM models prepared from 6-day chicken eggs were employed to evaluate angiogenesis inhibition. The results showed wogonin and ICI182780 both exhibited a potent ability to blunt IGF-1-stimulated MCF-7 cell growth. Either of wogonin and ICI182780 significantly inhibited ERα and p-Akt expressions in IGF-1-treated cells. The inhibitory effect of wogonin showed no difference from that of ICI182780 on IGF-1-stimulated expressions of ERα and p-Akt. Meanwhile, wogonin at different concentrations showed significant inhibitory effect on CAM angiogenesis. These results suggest the inhibitory effect of wogonin on breast adenocarcinoma growth via inhibiting IGF-1-mediated PI3K-Akt pathway and regulating ERα expression. Furthermore, wogonin has a strong anti-angiogenic effect on CAM model.
		                        		
		                        		
		                        		
		                        			Adenocarcinoma
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			pathology
		                        			;
		                        		
		                        			Angiogenesis Inhibitors
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Breast Neoplasms
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			pathology
		                        			;
		                        		
		                        			Cell Line, Tumor
		                        			;
		                        		
		                        			Cell Proliferation
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Chick Embryo
		                        			;
		                        		
		                        			Chorioallantoic Membrane
		                        			;
		                        		
		                        			blood supply
		                        			;
		                        		
		                        			Estrogen Receptor alpha
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Female
		                        			;
		                        		
		                        			Flavanones
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Insulin-Like Growth Factor I
		                        			;
		                        		
		                        			antagonists & inhibitors
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Scutellaria
		                        			;
		                        		
		                        			chemistry
		                        			
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail