1.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
		                        		
		                        			 Purpose:
		                        			Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles. 
		                        		
		                        			Materials and Methods:
		                        			Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion. 
		                        		
		                        			Results:
		                        			The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column. 
		                        		
		                        			Conclusions
		                        			Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy. 
		                        		
		                        		
		                        		
		                        	
2.Unmet Need for Palliative Care in Pediatric Hematology/Oncology Populations
Yi-Lun WANG ; Wan-Ju LEE ; Tsung-Yen CHANG ; Shih-Hsiang CHEN ; Chia-Chi CHIU ; Yi-Wen HSIAO ; Yu-Chuan WEN ; Tang-Her JAING
Clinical Pediatric Hematology-Oncology 2025;32(1):19-22
		                        		
		                        			 Background:
		                        			Delivering a poor prognosis to patients and their families is critically challenging in pediatric populations. The application of palliative care (PC) provides a bridge between accepting the occurrence of mortality and offering lifelong support.However, little is known about the specifics of PC. This study aims to explore the unmet need for PC in pediatric populations. 
		                        		
		                        			Methods:
		                        			We retrospectively reviewed the medical records of mortality cases in the Department of Pediatric Hematology and Oncology at Chang Gung Memorial Hospital. Statistical tests, including Chi-square and Student’s t-tests, were applied to determine the differences between early and late intervention groups in terms of the timing of PC introduction. 
		                        		
		                        			Results:
		                        			During the study period, 41 patients were included. Their median age was 11.8 years (IQR, 7.6-15.9). The majority of the disease statuses were refractory or relapsing (R/R). The incidence of memento application was significantly higher in the early intervention group (47.6% vs. 10%, P=0.0081). Vital signs variations tended to be end-of-life (EoL) indicators in this study. 
		                        		
		                        			Conclusion
		                        			The early introduction of PC encourages families to accompany their beloved child. EoL signs in the pediatric population include vital sign variations. With the presence of relevant EoL signs, clinical physicians can apply PC earlier to meet the needs. 
		                        		
		                        		
		                        		
		                        	
3.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
		                        		
		                        			 Purpose:
		                        			Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles. 
		                        		
		                        			Materials and Methods:
		                        			Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion. 
		                        		
		                        			Results:
		                        			The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column. 
		                        		
		                        			Conclusions
		                        			Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy. 
		                        		
		                        		
		                        		
		                        	
4.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
		                        		
		                        			 Purpose:
		                        			Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles. 
		                        		
		                        			Materials and Methods:
		                        			Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion. 
		                        		
		                        			Results:
		                        			The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column. 
		                        		
		                        			Conclusions
		                        			Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy. 
		                        		
		                        		
		                        		
		                        	
5.Unmet Need for Palliative Care in Pediatric Hematology/Oncology Populations
Yi-Lun WANG ; Wan-Ju LEE ; Tsung-Yen CHANG ; Shih-Hsiang CHEN ; Chia-Chi CHIU ; Yi-Wen HSIAO ; Yu-Chuan WEN ; Tang-Her JAING
Clinical Pediatric Hematology-Oncology 2025;32(1):19-22
		                        		
		                        			 Background:
		                        			Delivering a poor prognosis to patients and their families is critically challenging in pediatric populations. The application of palliative care (PC) provides a bridge between accepting the occurrence of mortality and offering lifelong support.However, little is known about the specifics of PC. This study aims to explore the unmet need for PC in pediatric populations. 
		                        		
		                        			Methods:
		                        			We retrospectively reviewed the medical records of mortality cases in the Department of Pediatric Hematology and Oncology at Chang Gung Memorial Hospital. Statistical tests, including Chi-square and Student’s t-tests, were applied to determine the differences between early and late intervention groups in terms of the timing of PC introduction. 
		                        		
		                        			Results:
		                        			During the study period, 41 patients were included. Their median age was 11.8 years (IQR, 7.6-15.9). The majority of the disease statuses were refractory or relapsing (R/R). The incidence of memento application was significantly higher in the early intervention group (47.6% vs. 10%, P=0.0081). Vital signs variations tended to be end-of-life (EoL) indicators in this study. 
		                        		
		                        			Conclusion
		                        			The early introduction of PC encourages families to accompany their beloved child. EoL signs in the pediatric population include vital sign variations. With the presence of relevant EoL signs, clinical physicians can apply PC earlier to meet the needs. 
		                        		
		                        		
		                        		
		                        	
6.Unmet Need for Palliative Care in Pediatric Hematology/Oncology Populations
Yi-Lun WANG ; Wan-Ju LEE ; Tsung-Yen CHANG ; Shih-Hsiang CHEN ; Chia-Chi CHIU ; Yi-Wen HSIAO ; Yu-Chuan WEN ; Tang-Her JAING
Clinical Pediatric Hematology-Oncology 2025;32(1):19-22
		                        		
		                        			 Background:
		                        			Delivering a poor prognosis to patients and their families is critically challenging in pediatric populations. The application of palliative care (PC) provides a bridge between accepting the occurrence of mortality and offering lifelong support.However, little is known about the specifics of PC. This study aims to explore the unmet need for PC in pediatric populations. 
		                        		
		                        			Methods:
		                        			We retrospectively reviewed the medical records of mortality cases in the Department of Pediatric Hematology and Oncology at Chang Gung Memorial Hospital. Statistical tests, including Chi-square and Student’s t-tests, were applied to determine the differences between early and late intervention groups in terms of the timing of PC introduction. 
		                        		
		                        			Results:
		                        			During the study period, 41 patients were included. Their median age was 11.8 years (IQR, 7.6-15.9). The majority of the disease statuses were refractory or relapsing (R/R). The incidence of memento application was significantly higher in the early intervention group (47.6% vs. 10%, P=0.0081). Vital signs variations tended to be end-of-life (EoL) indicators in this study. 
		                        		
		                        			Conclusion
		                        			The early introduction of PC encourages families to accompany their beloved child. EoL signs in the pediatric population include vital sign variations. With the presence of relevant EoL signs, clinical physicians can apply PC earlier to meet the needs. 
		                        		
		                        		
		                        		
		                        	
7.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
		                        		
		                        			 Purpose:
		                        			Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles. 
		                        		
		                        			Materials and Methods:
		                        			Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion. 
		                        		
		                        			Results:
		                        			The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column. 
		                        		
		                        			Conclusions
		                        			Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy. 
		                        		
		                        		
		                        		
		                        	
8.Unmet Need for Palliative Care in Pediatric Hematology/Oncology Populations
Yi-Lun WANG ; Wan-Ju LEE ; Tsung-Yen CHANG ; Shih-Hsiang CHEN ; Chia-Chi CHIU ; Yi-Wen HSIAO ; Yu-Chuan WEN ; Tang-Her JAING
Clinical Pediatric Hematology-Oncology 2025;32(1):19-22
		                        		
		                        			 Background:
		                        			Delivering a poor prognosis to patients and their families is critically challenging in pediatric populations. The application of palliative care (PC) provides a bridge between accepting the occurrence of mortality and offering lifelong support.However, little is known about the specifics of PC. This study aims to explore the unmet need for PC in pediatric populations. 
		                        		
		                        			Methods:
		                        			We retrospectively reviewed the medical records of mortality cases in the Department of Pediatric Hematology and Oncology at Chang Gung Memorial Hospital. Statistical tests, including Chi-square and Student’s t-tests, were applied to determine the differences between early and late intervention groups in terms of the timing of PC introduction. 
		                        		
		                        			Results:
		                        			During the study period, 41 patients were included. Their median age was 11.8 years (IQR, 7.6-15.9). The majority of the disease statuses were refractory or relapsing (R/R). The incidence of memento application was significantly higher in the early intervention group (47.6% vs. 10%, P=0.0081). Vital signs variations tended to be end-of-life (EoL) indicators in this study. 
		                        		
		                        			Conclusion
		                        			The early introduction of PC encourages families to accompany their beloved child. EoL signs in the pediatric population include vital sign variations. With the presence of relevant EoL signs, clinical physicians can apply PC earlier to meet the needs. 
		                        		
		                        		
		                        		
		                        	
9.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
		                        		
		                        			 Purpose:
		                        			Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles. 
		                        		
		                        			Materials and Methods:
		                        			Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion. 
		                        		
		                        			Results:
		                        			The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column. 
		                        		
		                        			Conclusions
		                        			Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy. 
		                        		
		                        		
		                        		
		                        	
10.Impact of Postoperative Prolonged Air Leakage on Long-Term Pulmonary Function after Lobectomy for Lung Cancer
June Yeop LEE ; Joonseok LEE ; Varissara JAVAKIJKARNJANAKUL ; Beatrice Chia-Sui SHIH ; Woohyun JUNG ; Jae Hyun JEON ; Kwhanmien KIM ; Sanghoon JHEON ; Sukki CHO
Journal of Chest Surgery 2024;57(6):511-518
		                        		
		                        			 Background:
		                        			This study aimed to evaluate the long-term impact of postoperative prolonged air leak (PAL) on pulmonary function. 
		                        		
		                        			Methods:
		                        			We enrolled 1,316 patients with pathologic stage I–III lung cancer who underwent lobectomy. The cohort was divided into 2 groups: those who experienced PAL (n=55) and those who did not (n=1,261). Propensity score matching was conducted at a 1:4 ratio, resulting in 49 patients in the PAL group and 189 in the non-PAL group. Changes in pulmonary function were compared among preoperative, 6-month postoperative, and 12-month postoperative measurements between the 2 groups. 
		                        		
		                        			Results:
		                        			The variables used for propensity score matching included age, sex, smoking history, body mass index, baseline pulmonary function, pathologic stage, and surgical approach. All standardized mean differences were less than 0.1. Six months postoperatively, the PAL group showed a greater reduction in both forced expiratory volume in 1 second(FEV1 ) (-13.0% vs. -10.0%, p=0.041) and forced vital capacity (FVC) (-15.0% vs. -9.0%, p<0.001)than the non-PAL group. In cases of upper lobectomy, there were no significant differencesin FEV 1 changes between the PAL and non-PAL groups at both 6 and 12 months. However, in lower lobectomy, the PAL group demonstrated a more pronounced decrease in FEV1(-14.0% vs. -11.0%, p=0.057) and FVC (-20.0% vs. -13.0%, p=0.006) than the non-PAL group at 6 months postoperatively. 
		                        		
		                        			Conclusion
		                        			Postoperative PAL delayed the recovery of pulmonary function after lobectomy. These effects were markedly more pronounced after lower lobectomy than after upper lobectomy. 
		                        		
		                        		
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail