1.Mechanism of Action of Kaixinsan in Ameliorating Alzheimer's Disease
Xiaoming HE ; Xiaotong WANG ; Dongyu MIN ; Xinxin WANG ; Meijia CHENG ; Yongming LIU ; Yetao JU ; Yali YANG ; Changbin YUAN ; Changyang YU ; Li ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(1):20-29
ObjectiveTo investigate the mechanism of action of Kaixinsan in the treatment of Alzheimer's disease (AD) based on network pharmacology, molecular docking, and animal experimental validation. MethodsThe Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP) and the Encyclopedia of Traditional Chinese Medicine(ETCM) databases were used to obtain the active ingredients and targets of Kaixinsan. GeneCards, Online Mendelian Inheritance in Man(OMIM), TTD, PharmGKB, and DrugBank databases were used to obtain the relevant targets of AD. The intersection (common targets) of the active ingredient targets of Kaixinsan and the relevant targets of AD was taken, and the network interaction analysis of the common targets was carried out in the STRING database to construct a protein-protein interaction(PPI) network. The CytoNCA plugin within Cytoscape was used to screen out the core targets, and the Metascape platform was used to perform gene ontology(GO) functional enrichment analysis and Kyoto encyclopedia of genes and genomes(KEGG) pathway enrichment analysis. The “drug-active ingredient-target” interaction network was constructed with the help of Cytoscape 3.8.2, and AutoDock Vina was used for molecular docking. Scopolamine (SCOP) was utilized for modeling and injected intraperitoneally once daily. Thirty-two male C57/BL6 mice were randomly divided into blank control (CON) group (0.9% NaCl, n=8), model (SCOP) group (3 mg·kg-1·d-1, n=8), positive control group (3 mg·kg-1·d-1 of SCOP+3 mg·kg-1·d-1 of Donepezil, n=8), and Kaixinsan group (3 mg·kg-1·d-1 of SCOP+6.5 g·kg-1·d-1 of Kaixinsan, n=8). Mice in each group were administered with 0.9% NaCl, Kaixinsan, or Donepezil by gavage twice a day for 14 days. Morris water maze experiment was used to observe the learning memory ability of mice. Hematoxylin-eosin (HE) staining method was used to observe the pathological changes in the CA1 area of the mouse hippocampus. Enzyme linked immunosorbent assay(ELISA) was used to determine the serum acetylcholine (ACh) and acetylcholinesterase (AChE) contents of mice. Western blot method was used to detect the protein expression levels of signal transducer and activator of transcription 3(STAT3) and nuclear transcription factor(NF)-κB p65 in the hippocampus of mice. ResultsA total of 73 active ingredients of Kaixinsan were obtained, and 578 potential targets (common targets) of Kaixinsan for the treatment of AD were screened out. Key active ingredients included kaempferol, gijugliflozin, etc.. Potential core targets were STAT3, NF-κB p65, et al. GO functional enrichment analysis obtained 3 124 biological functions, 254 cellular building blocks, and 461 molecular functions. KEGG pathway enrichment obtained 248 pathways, mainly involving cancer-related pathways, TRP pathway, cyclic adenosine monophosphate(cAMP) pathway, and NF-κB pathway. Molecular docking showed that the binding of the key active ingredients to the target targets was more stable. Morris water maze experiment indicated that Kaixinsan could improve the learning memory ability of SCOP-induced mice. HE staining and ELISA results showed that Kaixinsan had an ameliorating effect on central nerve injury in mice. Western blot test indicated that Kaixinsan had a down-regulating effect on the levels of NF-κB p65 phosphorylation and STAT3 phosphorylation in the hippocampal tissue of mice in the SCOP model. ConclusionKaixinsan can improve the cognitive impairment function in SCOP model mice and may reduce hippocampal neuronal damage and thus play a therapeutic role in the treatment of AD by regulating NF-κB p65, STAT3, and other targets involved in the NF-κB signaling pathway.
2.A study on the coercive experience of involuntarily hospitalized adolescents with mental disorders
Lingyu LI ; Xinyi LIU ; Jiawei SHI ; Gen CHENG ; Haiou ZOU
Chinese Medical Ethics 2025;38(2):232-240
ObjectiveTo explore the coercive experience of involuntarily hospitalized adolescents with mental disorders during the admission process and hospitalization, providing references for formulating targeted nursing interventions. MethodsSemi-structured interviews were conducted with 15 involuntarily hospitalized adolescents with mental disorders selected from October to December 2023, and the themes were summarized and extracted by content analysis. ResultsA total of 3 themes and 10 sub-themes were extracted, which were used to elaborate the essential contents, causes, and improvement methods of coercive experience. These encompassed the multi-dimensional content of coercive experience (complex emotional experience, different physical sensations, and contradictory cognitive evaluation), the multi-faceted causes of coercive experience (insufficient personal preparation, inadequate parental communication, and strict medical management system), as well as the phased improvement of coercive experience (adequate communication before hospitalization, patient notification before coercive intervention, respecting for demands during coercive intervention, and comforting explanation after coercive intervention). ConclusionThe essential content of the coercive experience of involuntarily hospitalized adolescents with mental disorders is complex and has various causes, which require cooperation from multiple parties to improve. Therefore, parents should respect the expression of their children’s self-will, and medical staff should respect patients’ autonomy, establishing a protection-constrained doctor-patient relationship model and collaborating to reduce the use of coercive interventions, to improve the overall medical satisfaction of adolescents with mental disorders.
3.Efficacy Mechanism of Xianlian Jiedu Prescription Against Colorectal Cancer Recurrence vias Regulating Angiogenesis
Yanru XU ; Lihuiping TAO ; Jingyang QIAN ; Weixing SHEN ; Jiani TAN ; Chengtao YU ; Minmin FAN ; Changliang XU ; Yueyang LAI ; Liu LI ; Dongdong SUN ; Haibo CHENG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(6):79-87
ObjectiveTo explore effect of Xianlian Jiedu prescription on the recurrence of colorectal cancer (CRC) and investigate the related mechanisms. MethodsA postoperative recurrence model was established in 25 Balb/c mice by injecting CT26 cells subcutaneously into the armpit, followed by surgical removal of 99% of the subcutaneous tumor. The mice were randomly divided into model group, low-dose Xianlian Jiedu prescription (XLJDP-L) group (6.45 g·kg-1·d-1), medium-dose Xianlian Jiedu prescription (XLJDP-M) group (12.9 g·kg-1·d-1), high-dose Xianlian Jiedu prescription (XLJDP-H) group (25.8 g·kg-1·d-1), and 5-fluorouracil (5-FU) group (1×10-3 g·kg-1·d-1). The mice were euthanized after 14 days of continuous intervention, and recurrent tumor tissue was harvested. Hematoxylin and eosin (HE) staining was used to observe pathological and morphological changes in the recurrent tumor tissue. Immunohistochemistry (IHC) was employed to assess the expression of proliferating cell nuclear antigen (Ki67), vascular endothelial growth factor (VEGF), and platelet-endothelial cell adhesion molecule (CD31) in recurrent tumor tissue. The Western blot was used to detect the protein expression levels of angiopoietin-2 (ANG-2), VEGF, phosphorylated-protein kinase B (p-Akt), protein kinase B (Akt), phosphorylated-phosphatidylinositol 3-kinase (p-PI3K), and phosphatidylinositol 3-kinase (PI3K) in recurrent tumor tissue. ResultsBefore treatment, there were no statistical differences in tumor volume, tumor weight, and body mass among the XLJDP-L, XLJDP-M, and XLJDP-H groups and the 5-FU group compared to the model group, indicating model stability. After treatment, compared with those in the model group, the tumor volume and tumor weight in the XLJDP-L, XLJDP-M, and XLJDP-H groups and the 5-FU group were significantly reduced (P<0.01), showing dose dependency. Meanwhile, there were no significant differences in body weight among the XLJDP-L, XLJDP-M, and XLJDP-H groups and the 5-FU group compared to the model group. HE staining showed that compared with that in the model group, tumor tissue in the XLJDP-L, XLJDP-M, and XLJDP-H groups and the 5-FU group had loosely arranged cells, increased intercellular spaces, small and shriveled nuclei, light staining, fewer mitotic figures and atypical nuclei, and increased necrotic areas. IHC showed that compared with those of the model group, the positive rates of Ki67, VEGF, and CD31 in the recurrent tumor tissue of the XLJDP-L, XLJDP-M, and XLJDP-H groups and the 5-FU group were significantly reduced (P<0.01) in a dose-dependent manner. Western blot results showed that compared with those of the model group, the protein expression levels of ANG-2 and VEGF in the recurrent tumor tissue of the XLJDP-L, XLJDP-M, and XLJDP-H groups and the 5-FU group were significantly downregulated (P<0.05, P<0.01), and the p-Akt/Akt and p-PI3K/PI3K ratios were significantly decreased in a dose-dependent manner (P<0.05, P<0.01). ConclusionXianlian Jiedu prescription significantly inhibits the recurrence of CRC in mice after subcutaneous tumor surgery. The mechanism may involve regulating the PI3K/Akt pathway and downregulating key angiogenic proteins such as ANG-2, VEGF, and CD31.
4.Discussion on the decoction and dosing methods of rhubarb root and rhizome in classical prescriptions
Zilin REN ; Changxiang LI ; Yuxiao ZHENG ; Xin LAN ; Ying LIU ; Yanhui HE ; Fafeng CHENG ; Qingguo WANG ; Xueqian WANG
Journal of Beijing University of Traditional Chinese Medicine 2025;48(1):48-54
The purpose of this paper is to explore the decoction and dosing methods of rhubarb root and rhizome in classical prescriptions and to provide a reference basis for the clinical use of rhubarb root and rhizome. By collating the relevant classical prescriptions of rhubarb root and rhizome in Shanghan Lun and Jingui Yaolüe, the relationship between its decoction and dosing methods and the syndrome was analyzed. The decoction of rhubarb root and rhizome in classical prescriptions can be divided into three categories: simultaneous decoction, decoction later, and other methods (impregnation in Mafei decoction, decoction with water from the well spring first taken in the morning, and pills). If it enters the blood level or wants to slow down, rhubarb root and rhizome should be decocted at the same time with other drugs. If it enters the qi level and wants to speed up, rhubarb root and rhizome should be decocted later. If it wants to upwardly move, rhubarb root and rhizome should be immersed in Mafei decoction. If it wants to suppress liver yang, rhubarb root and rhizome should be decocted with water from the well spring first taken in the morning. If the disease is prolonged, rhubarb root and rhizome should be taken in pill form. The dosing methods of rhubarb root and rhizome can be divided into five categories: draught, twice, three times, before meals, and unspecified. For acute and serious illnesses with excess of pathogenic qi and adequate vital qi, we choose draught. For gastrointestinal diseases, we choose to take the medicine twice. For achieving a moderate and long-lasting effect, we choose to take the medicine three times. If the disease is located in the lower part of the heart and abdomen, we choose to take it before meals. The use of rhubarb root and rhizome in clinical practice requires the selection of the appropriate decoction and dosing methods according to the location of the disease, the severity of the disease, the patient′s constitution, and the condition after taking the medicine.
5.Effect Analysis of Different Interventions to Improve Neuroinflammation in The Treatment of Alzheimer’s Disease
Jiang-Hui SHAN ; Chao-Yang CHU ; Shi-Yu CHEN ; Zhi-Cheng LIN ; Yu-Yu ZHOU ; Tian-Yuan FANG ; Chu-Xia ZHANG ; Biao XIAO ; Kai XIE ; Qing-Juan WANG ; Zhi-Tao LIU ; Li-Ping LI
Progress in Biochemistry and Biophysics 2025;52(2):310-333
Alzheimer’s disease (AD) is a central neurodegenerative disease characterized by progressive cognitive decline and memory impairment in clinical. Currently, there are no effective treatments for AD. In recent years, a variety of therapeutic approaches from different perspectives have been explored to treat AD. Although the drug therapies targeted at the clearance of amyloid β-protein (Aβ) had made a breakthrough in clinical trials, there were associated with adverse events. Neuroinflammation plays a crucial role in the onset and progression of AD. Continuous neuroinflammatory was considered to be the third major pathological feature of AD, which could promote the formation of extracellular amyloid plaques and intracellular neurofibrillary tangles. At the same time, these toxic substances could accelerate the development of neuroinflammation, form a vicious cycle, and exacerbate disease progression. Reducing neuroinflammation could break the feedback loop pattern between neuroinflammation, Aβ plaque deposition and Tau tangles, which might be an effective therapeutic strategy for treating AD. Traditional Chinese herbs such as Polygonum multiflorum and Curcuma were utilized in the treatment of AD due to their ability to mitigate neuroinflammation. Non-steroidal anti-inflammatory drugs such as ibuprofen and indomethacin had been shown to reduce the level of inflammasomes in the body, and taking these drugs was associated with a low incidence of AD. Biosynthetic nanomaterials loaded with oxytocin were demonstrated to have the capability to anti-inflammatory and penetrate the blood-brain barrier effectively, and they played an anti-inflammatory role via sustained-releasing oxytocin in the brain. Transplantation of mesenchymal stem cells could reduce neuroinflammation and inhibit the activation of microglia. The secretion of mesenchymal stem cells could not only improve neuroinflammation, but also exert a multi-target comprehensive therapeutic effect, making it potentially more suitable for the treatment of AD. Enhancing the level of TREM2 in microglial cells using gene editing technologies, or application of TREM2 antibodies such as Ab-T1, hT2AB could improve microglial cell function and reduce the level of neuroinflammation, which might be a potential treatment for AD. Probiotic therapy, fecal flora transplantation, antibiotic therapy, and dietary intervention could reshape the composition of the gut microbiota and alleviate neuroinflammation through the gut-brain axis. However, the drugs of sodium oligomannose remain controversial. Both exercise intervention and electromagnetic intervention had the potential to attenuate neuroinflammation, thereby delaying AD process. This article focuses on the role of drug therapy, gene therapy, stem cell therapy, gut microbiota therapy, exercise intervention, and brain stimulation in improving neuroinflammation in recent years, aiming to provide a novel insight for the treatment of AD by intervening neuroinflammation in the future.
6.Application of Recombinant Collagen in Biomedicine
Huan HU ; Hong ZHANG ; Jian WANG ; Li-Wen WANG ; Qian LIU ; Ning-Wen CHENG ; Xin-Yue ZHANG ; Yun-Lan LI
Progress in Biochemistry and Biophysics 2025;52(2):395-416
Collagen is a major structural protein in the matrix of animal cells and the most widely distributed and abundant functional protein in mammals. Collagen’s good biocompatibility, biodegradability and biological activity make it a very valuable biomaterial. According to the source of collagen, it can be broadly categorized into two types: one is animal collagen; the other is recombinant collagen. Animal collagen is mainly extracted and purified from animal connective tissues by chemical methods, such as acid, alkali and enzyme methods, etc. Recombinant collagen refers to collagen produced by gene splicing technology, where the amino acid sequence is first designed and improved according to one’s own needs, and the gene sequence of improved recombinant collagen is highly consistent with that of human beings, and then the designed gene sequence is cloned into the appropriate vector, and then transferred to the appropriate expression vector. The designed gene sequence is cloned into a suitable vector, and then transferred to a suitable expression system for full expression, and finally the target protein is obtained by extraction and purification technology. Recombinant collagen has excellent histocompatibility and water solubility, can be directly absorbed by the human body and participate in the construction of collagen, remodeling of the extracellular matrix, cell growth, wound healing and site filling, etc., which has demonstrated significant effects, and has become the focus of the development of modern biomedical materials. This paper firstly elaborates the structure, type, and tissue distribution of human collagen, as well as the associated genetic diseases of different types of collagen, then introduces the specific process of producing animal source collagen and recombinant collagen, explains the advantages of recombinant collagen production method, and then introduces the various systems of expressing recombinant collagen, as well as their advantages and disadvantages, and finally briefly introduces the application of animal collagen, focusing on the use of animal collagen in the development of biopharmaceutical materials. In terms of application, it focuses on the use of animal disease models exploring the application effects of recombinant collagen in wound hemostasis, wound repair, corneal therapy, female pelvic floor dysfunction (FPFD), vaginal atrophy (VA) and vaginal dryness, thin endometritis (TE), chronic endometritis (CE), bone tissue regeneration in vivo, cardiovascular diseases, breast cancer (BC) and anti-aging. The mechanism of action of recombinant collagen in the treatment of FPFD and CE was introduced, and the clinical application and curative effect of recombinant collagen in skin burn, skin wound, dermatitis, acne and menopausal urogenital syndrome (GSM) were summarized. From the exploratory studies and clinical applications, it is evident that recombinant collagen has demonstrated surprising effects in the treatment of all types of diseases, such as reducing inflammation, promoting cell proliferation, migration and adhesion, increasing collagen deposition, and remodeling the extracellular matrix. At the end of the review, the challenges faced by recombinant collagen are summarized: to develop new recombinant collagen types and dosage forms, to explore the mechanism of action of recombinant collagen, and to provide an outlook for the future development and application of recombinant collagen.
7.Translational Research of Electromagnetic Fields on Diseases Related With Bone Remodeling: Review and Prospects
Peng SHANG ; Jun-Yu LIU ; Sheng-Hang WANG ; Jian-Cheng YANG ; Zhe-Yuan ZHANG ; An-Lin LI ; Hao ZHANG ; Yu-Hong ZENG
Progress in Biochemistry and Biophysics 2025;52(2):439-455
Electromagnetic fields can regulate the fundamental biological processes involved in bone remodeling. As a non-invasive physical therapy, electromagnetic fields with specific parameters have demonstrated therapeutic effects on bone remodeling diseases, such as fractures and osteoporosis. Electromagnetic fields can be generated by the movement of charged particles or induced by varying currents. Based on whether the strength and direction of the electric field change over time, electromagnetic fields can be classified into static and time-varying fields. The treatment of bone remodeling diseases with static magnetic fields primarily focuses on fractures, often using magnetic splints to immobilize the fracture site while studying the effects of static magnetic fields on bone healing. However, there has been relatively little research on the prevention and treatment of osteoporosis using static magnetic fields. Pulsed electromagnetic fields, a type of time-varying field, have been widely used in clinical studies for treating fractures, osteoporosis, and non-union. However, current clinical applications are limited to low-frequency, and research on the relationship between frequency and biological effects remains insufficient. We believe that different types of electromagnetic fields acting on bone can induce various “secondary physical quantities”, such as magnetism, force, electricity, acoustics, and thermal energy, which can stimulate bone cells either individually or simultaneously. Bone cells possess specific electromagnetic properties, and in a static magnetic field, the presence of a magnetic field gradient can exert a certain magnetism on the bone tissue, leading to observable effects. In a time-varying magnetic field, the charged particles within the bone experience varying Lorentz forces, causing vibrations and generating acoustic effects. Additionally, as the frequency of the time-varying field increases, induced currents or potentials can be generated within the bone, leading to electrical effects. When the frequency and power exceed a certain threshold, electromagnetic energy can be converted into thermal energy, producing thermal effects. In summary, external electromagnetic fields with different characteristics can generate multiple physical quantities within biological tissues, such as magnetic, electric, mechanical, acoustic, and thermal effects. These physical quantities may also interact and couple with each other, stimulating the biological tissues in a combined or composite manner, thereby producing biological effects. This understanding is key to elucidating the electromagnetic mechanisms of how electromagnetic fields influence biological tissues. In the study of electromagnetic fields for bone remodeling diseases, attention should be paid to the biological effects of bone remodeling under different electromagnetic wave characteristics. This includes exploring innovative electromagnetic source technologies applicable to bone remodeling, identifying safe and effective electromagnetic field parameters, and combining basic research with technological invention to develop scientifically grounded, advanced key technologies for innovative electromagnetic treatment devices targeting bone remodeling diseases. In conclusion, electromagnetic fields and multiple physical factors have the potential to prevent and treat bone remodeling diseases, and have significant application prospects.
8.Influencing factors for recompensation in patients with decompensated hepatitis C cirrhosis
Danqing XU ; Huan MU ; Yingyuan ZHANG ; Lixian CHANG ; Yuanzhen WANG ; Weikun LI ; Zhijian DONG ; Lihua ZHANG ; Yijing CHENG ; Li LIU
Journal of Clinical Hepatology 2025;41(2):269-276
ObjectiveTo investigate the influencing factors for recompensation in patients with decompensated hepatitis C cirrhosis, and to establish a predictive model. MethodsA total of 217 patients who were diagnosed with decompensated hepatitis C cirrhosis and were admitted to The Third People’s Hospital of Kunming l from January, 2019 to December, 2022 were enrolled, among whom 63 patients who were readmitted within at least 1 year and had no portal hypertension-related complications were enrolled as recompensation group, and 154 patients without recompensation were enrolled as control group. Related clinical data were collected, and univariate and multivariate analyses were performed for the factors that may affect the occurrence of recompensation. The independent-samples t test was used for comparison of normally distributed measurement data between two groups, and the Mann-Whitney U test was used for comparison of non-normally distributed measurement data between two groups; the chi-square test or the Fisher’s exact test was used for comparison of categorical data between two groups. A binary Logistic regression analysis was used to investigate the influencing factors for recompensation in patients with decompensated hepatitis C cirrhosis, and the receiver operating characteristic (ROC) curve was used to assess the predictive performance of the model. ResultsAmong the 217 patients with decompensated hepatitis C cirrhosis, 63 (29.03%) had recompensation. There were significant differences between the recompensation group and the control group in HIV history (χ2=4.566, P=0.034), history of partial splenic embolism (χ2=6.687, P=0.014), Child-Pugh classification (χ2=11.978, P=0.003), grade of ascites (χ2=14.229, P<0.001), albumin (t=4.063, P<0.001), prealbumin (Z=-3.077, P=0.002), high-density lipoprotein (t=2.854, P=0.011), high-sensitivity C-reactive protein (Z=-2.447, P=0.014), prothrombin time (Z=-2.441, P=0.015), carcinoembryonic antigen (Z=-2.113, P=0.035), alpha-fetoprotein (AFP) (Z=-2.063, P=0.039), CA125 (Z=-2.270, P=0.023), TT3 (Z=-3.304, P<0.001), TT4 (Z=-2.221, P=0.026), CD45+ (Z=-2.278, P=0.023), interleukin-5 (Z=-2.845, P=0.004), tumor necrosis factor-α (Z=-2.176, P=0.030), and portal vein width (Z=-5.283, P=0.005). The multivariate analysis showed that history of partial splenic embolism (odds ratio [OR]=3.064, P=0.049), HIV history (OR=0.195, P=0.027), a small amount of ascites (OR=3.390, P=0.017), AFP (OR=1.003, P=0.004), and portal vein width (OR=0.600, P<0.001) were independent influencing factors for the occurrence of recompensation in patients with decompensated hepatitis C cirrhosis. The ROC curve analysis showed that HIV history, grade of ascites, history of partial splenic embolism, AFP, portal vein width, and the combined predictive model of these indices had an area under the ROC curve of 0.556, 0.641, 0.560, 0.589, 0.745, and 0.817, respectively. ConclusionFor patients with decompensated hepatitis C cirrhosis, those with a history of partial splenic embolism, a small amount of ascites, and an increase in AFP level are more likely to experience recompensation, while those with a history of HIV and an increase in portal vein width are less likely to experience recompensation.
9.Predictive Modeling of Symptomatic Intracranial Hemorrhage Following Endovascular Thrombectomy: Insights From the Nationwide TREAT-AIS Registry
Jia-Hung CHEN ; I-Chang SU ; Yueh-Hsun LU ; Yi-Chen HSIEH ; Chih-Hao CHEN ; Chun-Jen LIN ; Yu-Wei CHEN ; Kuan-Hung LIN ; Pi-Shan SUNG ; Chih-Wei TANG ; Hai-Jui CHU ; Chuan-Hsiu FU ; Chao-Liang CHOU ; Cheng-Yu WEI ; Shang-Yih YAN ; Po-Lin CHEN ; Hsu-Ling YEH ; Sheng-Feng SUNG ; Hon-Man LIU ; Ching-Huang LIN ; Meng LEE ; Sung-Chun TANG ; I-Hui LEE ; Lung CHAN ; Li-Ming LIEN ; Hung-Yi CHIOU ; Jiunn-Tay LEE ; Jiann-Shing JENG ;
Journal of Stroke 2025;27(1):85-94
Background:
and Purpose Symptomatic intracranial hemorrhage (sICH) following endovascular thrombectomy (EVT) is a severe complication associated with adverse functional outcomes and increased mortality rates. Currently, a reliable predictive model for sICH risk after EVT is lacking.
Methods:
This study used data from patients aged ≥20 years who underwent EVT for anterior circulation stroke from the nationwide Taiwan Registry of Endovascular Thrombectomy for Acute Ischemic Stroke (TREAT-AIS). A predictive model including factors associated with an increased risk of sICH after EVT was developed to differentiate between patients with and without sICH. This model was compared existing predictive models using nationwide registry data to evaluate its relative performance.
Results:
Of the 2,507 identified patients, 158 developed sICH after EVT. Factors such as diastolic blood pressure, Alberta Stroke Program Early CT Score, platelet count, glucose level, collateral score, and successful reperfusion were associated with the risk of sICH after EVT. The TREAT-AIS score demonstrated acceptable predictive accuracy (area under the curve [AUC]=0.694), with higher scores being associated with an increased risk of sICH (odds ratio=2.01 per score increase, 95% confidence interval=1.64–2.45, P<0.001). The discriminatory capacity of the score was similar in patients with symptom onset beyond 6 hours (AUC=0.705). Compared to existing models, the TREAT-AIS score consistently exhibited superior predictive accuracy, although this difference was marginal.
Conclusions
The TREAT-AIS score outperformed existing models, and demonstrated an acceptable discriminatory capacity for distinguishing patients according to sICH risk levels. However, the differences between models were only marginal. Further research incorporating periprocedural and postprocedural factors is required to improve the predictive accuracy.
10.Study on the protective efect and mechanism of paeoniflorin on palmitic acid-induced HepG2 cells
Tong LIU ; Shanzheng LI ; Cheng ZHOU ; Sutong LIU ; Lihui ZHANG ; Wenxia ZHAO
Journal of Clinical Hepatology 2025;41(3):499-505
ObjectiveTo investigate the role and mechanism of action of paeoniflorin (PF) in protecting HepG2 cells induced by palmitic acid (PA). MethodsHepG2 cells were stimulated with PA at a concentration of 250 μmol/L to establish a NAFLD model. Compound C at a concentration of 10 μmol/L was used as an inhibitor, and PF at a concentration of 25 μmol/L was used for intervention. The experiment was divided into normal group (CON group) treated with complete culture medium, model group (MOD group) treated with PA, PF treatment group (MOD+PF group) treated with PA and PF, model+inhibitor group (MOD+COM group) treated with PA and Compound C, and model+inhibitor+PF group (MOD+COM+PF group) treated with PA, Compound C, and PF. Kits were used to measure lipid deposition indicators, liver function parameters, oxidative stress indicators, and inflammation indicators; oil red O staining was used to observe lipid deposition; Western Blot was used to measure the protein expression levels of AMPK, SIRT1, PGC-1α, mTOR, Beclin-1, LC3, and P62 in cells. The one-way analysis of variance was used for comparison of quantitative data between groups, while the Tukey’s test was used for comparison between two groups. ResultsCompared with the MOD group, PF improved the levels of TC and TG (P<0.05), reduced the levels of ALT, AST, CRP, TNF-α, IL-1β, and IL-6 (P<0.05), increased the activity of SOD and CAT and the level of GSH, and reduced the level of MDA in cells (all P<0.05). Oil red O staining showed that PF alleviated lipid deposition in cells. Western blot results showed that compared with the MOD group, PF increased the protein expression levels of p-AMPK, SIRT1, PGC-1α, LC3Ⅱ/LC3Ⅰ, and Beclin-1 and reduced the protein expression levels of p-mTOR and P62 (all P<0.05). ConclusionPF can inhibit PA-induced oxidative stress and inflammatory response in HepG2 cells, improve lipid deposition, and promote autophagy via the AMPK/SIRT1/PGC-1α/mTOR signaling pathway.


Result Analysis
Print
Save
E-mail