1.6-Gingerol Induced Apoptosis and Cell Cycle Arrest in Glioma Cells via MnSOD and ERK Phosphorylation Modulation
Sher-Wei LIM ; Wei-Chung CHEN ; Huey-Jiun KO ; Yu-Feng SU ; Chieh-Hsin WU ; Fu-Long HUANG ; Chien-Feng LI ; Cheng Yu TSAI
Biomolecules & Therapeutics 2025;33(1):129-142
6-gingerol, a bioactive compound from ginger, has demonstrated promising anticancer properties across various cancer models by inducing apoptosis and inhibiting cell proliferation and invasion. In this study, we explore its mechanisms against glioblastoma multiforme (GBM), a notably aggressive and treatment-resistant brain tumor. We found that 6-gingerol crosses the blood-brain barrier more effectively than curcumin, enhancing its potential as a therapeutic agent for brain tumors. Our experiments show that 6-gingerol reduces cell proliferation and triggers apoptosis in GBM cell lines by disrupting cellular energy homeostasis. This process involves an increase in mitochondrial reactive oxygen species (mtROS) and a decrease in mitochondrial membrane potential, primarily due to the downregulation of manganese superoxide dismutase (MnSOD). Additionally, 6-gingerol reduces ERK phosphorylation by inhibiting EGFR and RAF, leading to G1 phase cell cycle arrest. These findings indicate that 6-gingerol promotes cell death in GBM cells by modulating MnSOD and ROS levels and arresting the cell cycle through the ERFR-RAF-1/MEK/ ERK signaling pathway, highlighting its potential as a therapeutic agent for GBM and setting the stage for future clinical research.
2.6-Gingerol Induced Apoptosis and Cell Cycle Arrest in Glioma Cells via MnSOD and ERK Phosphorylation Modulation
Sher-Wei LIM ; Wei-Chung CHEN ; Huey-Jiun KO ; Yu-Feng SU ; Chieh-Hsin WU ; Fu-Long HUANG ; Chien-Feng LI ; Cheng Yu TSAI
Biomolecules & Therapeutics 2025;33(1):129-142
6-gingerol, a bioactive compound from ginger, has demonstrated promising anticancer properties across various cancer models by inducing apoptosis and inhibiting cell proliferation and invasion. In this study, we explore its mechanisms against glioblastoma multiforme (GBM), a notably aggressive and treatment-resistant brain tumor. We found that 6-gingerol crosses the blood-brain barrier more effectively than curcumin, enhancing its potential as a therapeutic agent for brain tumors. Our experiments show that 6-gingerol reduces cell proliferation and triggers apoptosis in GBM cell lines by disrupting cellular energy homeostasis. This process involves an increase in mitochondrial reactive oxygen species (mtROS) and a decrease in mitochondrial membrane potential, primarily due to the downregulation of manganese superoxide dismutase (MnSOD). Additionally, 6-gingerol reduces ERK phosphorylation by inhibiting EGFR and RAF, leading to G1 phase cell cycle arrest. These findings indicate that 6-gingerol promotes cell death in GBM cells by modulating MnSOD and ROS levels and arresting the cell cycle through the ERFR-RAF-1/MEK/ ERK signaling pathway, highlighting its potential as a therapeutic agent for GBM and setting the stage for future clinical research.
3.6-Gingerol Induced Apoptosis and Cell Cycle Arrest in Glioma Cells via MnSOD and ERK Phosphorylation Modulation
Sher-Wei LIM ; Wei-Chung CHEN ; Huey-Jiun KO ; Yu-Feng SU ; Chieh-Hsin WU ; Fu-Long HUANG ; Chien-Feng LI ; Cheng Yu TSAI
Biomolecules & Therapeutics 2025;33(1):129-142
6-gingerol, a bioactive compound from ginger, has demonstrated promising anticancer properties across various cancer models by inducing apoptosis and inhibiting cell proliferation and invasion. In this study, we explore its mechanisms against glioblastoma multiforme (GBM), a notably aggressive and treatment-resistant brain tumor. We found that 6-gingerol crosses the blood-brain barrier more effectively than curcumin, enhancing its potential as a therapeutic agent for brain tumors. Our experiments show that 6-gingerol reduces cell proliferation and triggers apoptosis in GBM cell lines by disrupting cellular energy homeostasis. This process involves an increase in mitochondrial reactive oxygen species (mtROS) and a decrease in mitochondrial membrane potential, primarily due to the downregulation of manganese superoxide dismutase (MnSOD). Additionally, 6-gingerol reduces ERK phosphorylation by inhibiting EGFR and RAF, leading to G1 phase cell cycle arrest. These findings indicate that 6-gingerol promotes cell death in GBM cells by modulating MnSOD and ROS levels and arresting the cell cycle through the ERFR-RAF-1/MEK/ ERK signaling pathway, highlighting its potential as a therapeutic agent for GBM and setting the stage for future clinical research.
4.Transparency of clinical practice guidelines: A mixed methods research.
Xinyi WANG ; Youlin LONG ; Tengyue HU ; Zixin YANG ; Liqin LIU ; Liu YANG ; Yifan CHENG ; Ran GU ; Yanjiao SHEN ; Nan YANG ; Jin HUANG ; Yaolong CHEN ; Liang DU
Chinese Medical Journal 2025;138(15):1882-1884
5.Therapeutic potential of ion channel modulation in Alzheimer's disease.
Bing HUANG ; Cheng-Min YANG ; Zhi-Cheng LU ; Li-Na TANG ; Sheng-Long MO ; Chong-Dong JIAN ; Jing-Wei SHANG
Acta Physiologica Sinica 2025;77(2):327-344
Alzheimer's disease (AD), a prototypical neurodegenerative disorder, encompasses multifaceted pathological processes. As pivotal cellular structures within the central nervous system, ion channels play critical roles in regulating neuronal excitability, synaptic transmission, and neurotransmitter release. Extensive research has revealed significant alterations in the expression and function of ion channels in AD, implicating an important role of ion channels in the pathogenesis of abnormal Aβ deposition, neuroinflammation, oxidative stress, and disruptions in calcium homeostasis and neural network functionality. This review systematically summarizes the crucial roles and underlying mechanisms of ion channels in the onset and progression of AD, highlighting how these channel abnormalities contribute to AD pathophysiology. We also discuss the therapeutic potential of ion channel modulation in AD treatment, emphasizing the importance of addressing multifactorial nature and heterogeneity of AD. The development of multi-target drugs and precision therapies is proposed as a future direction of scientific research.
Alzheimer Disease/therapy*
;
Humans
;
Ion Channels/physiology*
;
Oxidative Stress
;
Animals
;
Amyloid beta-Peptides/metabolism*
;
Synaptic Transmission
;
Calcium/metabolism*
6.Sequential therapy with carglumic acid in three cases of organic acidemia crisis.
Yan-Yan CHEN ; Ting-Ting CHENG ; Jie YAO ; Long-Guang HUANG ; Xiu-Zhen LI ; Wen ZHANG ; Hong LIANG
Chinese Journal of Contemporary Pediatrics 2025;27(7):850-853
Case 1: A 19-day-old male infant presented with poor feeding and decreased activity for 2 weeks, worsening with poor responsiveness for 3 days. At 5 days old, he developed poor feeding and poor responsiveness, was hospitalized, and was found to have elevated blood ammonia and thrombocytopenia. Whole-genome genetic analysis revealed a pathogenic homozygous mutation in the PCCA gene, NM-000282.4: c.1834-1835del (p.Arg612AspfsTer44), leading to a diagnosis of propionic acidemia. Case 2: A 4-day-old male infant presented with poor responsiveness and feeding difficulties since birth, with elevated blood ammonia for 1 day. He showed weak sucking and deteriorating responsiveness, with blood ammonia >200 µmol/L. Genetic testing identified two heterozygous mutations in the MMUT gene: NM_000255.4: c.1677-1G>A and NM_000255.4: ex.5del, confirming methylmalonic acidemia. Case 3: A 20-day-old male infant presented with poor feeding for 15 days and skin petechiae for 8 days. He developed feeding difficulties at 5 days old and lower limb petechiae at 12 days old, with blood ammonia measured at 551.6 µmol/L. Genetic analysis found two heterozygous mutations in the PCCA gene: NM_000282.4: c.1118T>A (p.Met373Lys) and NM_000282.4: ex.16-18del, confirming propionic acidemia. In the first two cases, continuous hemodiafiltration was performed for 30 hours and 20 hours, respectively, before administering carglumic acid. In the third case, carglumic acid was administered orally without continuous hemodiafiltration, resulting in a decrease in blood ammonia from 551.6 µmol/L to 72.0 µmol/L within 6 hours, with a reduction rate of approximately 20-25 µmol/(kg·h), similar to the first two cases. Carglumic acid was effective in all three cases, suggesting it may help optimize future treatment protocols for organic acidemia.
Humans
;
Male
;
Infant, Newborn
;
Propionic Acidemia/drug therapy*
;
Amino Acid Metabolism, Inborn Errors/genetics*
;
Mutation
;
Methylmalonyl-CoA Decarboxylase/genetics*
;
Citrates/administration & dosage*
;
Carbon-Carbon Ligases/genetics*
;
Glutamates
7.Predictive value of bpMRI for pelvic lymph node metastasis in prostate cancer patients with PSA≤20 μg/L.
Lai DONG ; Rong-Jie SHI ; Jin-Wei SHANG ; Zhi-Yi SHEN ; Kai-Yu ZHANG ; Cheng-Long ZHANG ; Bin YANG ; Tian-Bao HUANG ; Ya-Min WANG ; Rui-Zhe ZHAO ; Wei XIA ; Shang-Qian WANG ; Gong CHENG ; Li-Xin HUA
National Journal of Andrology 2025;31(5):426-431
Objective: The aim of this study is to explore the predictive value of biparametric magnetic resonance imaging(bpMRI)for pelvic lymph node metastasis in prostate cancer patients with PSA≤20 μg/L and establish a nomogram. Methods: The imaging data and clinical data of 363 patients undergoing radical prostatectomy and pelvic lymph node dissection in the First Affiliated Hospital of Nanjing Medical University from July 2018 to December 2023 were retrospectively analyzed. Univariate analysis and multivariate logistic regression were used to screen independent risk factors for pelvic lymph node metastasis in prostate cancer, and a nomogram of the clinical prediction model was established. Calibration curves were drawn to evaluate the accuracy of the model. Results: Multivariate logistic regression analysis showed extrocapusular extension (OR=8.08,95%CI=2.62-24.97, P<0.01), enlargement of pelvic lymph nodes (OR=4.45,95%CI=1.16-17.11,P=0.030), and biopsy ISUP grade(OR=1.97,95%CI=1.12-3.46, P=0.018)were independent risk factors for pelvic lymph node metastasis. The C-index of the prediction model was 0.834, which indicated that the model had a good prediction ability. The actual value of the model calibration curve and the prediction probability of the model fitted well, indicating that the model had a good accuracy. Further analysis of DCA curve showed that the model had good clinical application value when the risk threshold ranged from 0.05 to 0.70.Conclusion: For prostate cancer patients with PSA≤20 μg/L, bpMRI has a good predictive value for the pelvic lymph node metastasis of prostate cancer with extrocapusular extension, enlargement of pelvic lymph nodes and ISUP grade≥4.
Humans
;
Male
;
Prostatic Neoplasms/diagnostic imaging*
;
Lymphatic Metastasis
;
Retrospective Studies
;
Nomograms
;
Prostate-Specific Antigen/blood*
;
Lymph Nodes/pathology*
;
Pelvis
;
Predictive Value of Tests
;
Prostatectomy
;
Lymph Node Excision
;
Risk Factors
;
Magnetic Resonance Imaging
;
Logistic Models
;
Middle Aged
;
Aged
8.Oxymatrine, a novel TLR2 agonist, promotes megakaryopoiesis and thrombopoiesis through the STING/NF-κB pathway.
Chengyang NI ; Ling ZHOU ; Shuo YANG ; Mei RAN ; Jiesi LUO ; Kui CHENG ; Feihong HUANG ; Xiaoqin TANG ; Xiang XIE ; Dalian QIN ; Qibing MEI ; Long WANG ; Juan XIAO ; Jianming WU
Journal of Pharmaceutical Analysis 2025;15(1):101054-101054
Radiation-induced thrombocytopenia (RIT) faces a perplexing challenge in the clinical treatment of cancer patients, and current therapeutic approaches are inadequate in the clinical settings. In this research, oxymatrine, a new molecule capable of healing RIT was screened out, and the underlying regulatory mechanism associated with magakaryocyte (MK) differentiation and thrombopoiesis was demonstrated. The capacity of oxymatrine to induce MK differentiation was verified in K-562 and Meg-01 cells in vitro. The ability to induce thrombopoiesis was subsequently demonstrated in Tg (cd41:enhanced green fluorescent protein (eGFP)) zebrafish and RIT model mice. In addition, we carried out network pharmacological prediction, drug affinity responsive target stability assay (DARTS) and cellular thermal shift assay (CETSA) analyses to explore the potential targets of oxymatrine. Moreover, the pathway underlying the effects of oxymatrine was determined by Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses, Western blot (WB), and immunofluorescence. Oxymatrine markedly promoted MK differentiation and maturation in vitro. Moreover, oxymatrine induced thrombopoiesis in Tg (cd41:eGFP) zebrafish and accelerated thrombopoiesis and platelet function recovery in RIT model mice. Mechanistically, oxymatrine directly binds to toll-like receptor 2 (TLR2) and further regulates the downstream pathway stimulator of interferon genes (STING)/nuclear factor-kappaB (NF-κB), which can be blocked by C29 and C-176, which are specific inhibitors of TLR2 and STING, respectively. Taken together, we demonstrated that oxymatrine, a novel TLR2 agonist, plays a critical role in accelerating MK differentiation and thrombopoiesis via the STING/NF-κB axis, suggesting that oxymatrine is a promising candidate for RIT therapy.
9.Experts consensus on standard items of the cohort construction and quality control of temporomandibular joint diseases (2024)
Min HU ; Chi YANG ; Huawei LIU ; Haixia LU ; Chen YAO ; Qiufei XIE ; Yongjin CHEN ; Kaiyuan FU ; Bing FANG ; Songsong ZHU ; Qing ZHOU ; Zhiye CHEN ; Yaomin ZHU ; Qingbin ZHANG ; Ying YAN ; Xing LONG ; Zhiyong LI ; Yehua GAN ; Shibin YU ; Yuxing BAI ; Yi ZHANG ; Yanyi WANG ; Jie LEI ; Yong CHENG ; Changkui LIU ; Ye CAO ; Dongmei HE ; Ning WEN ; Shanyong ZHANG ; Minjie CHEN ; Guoliang JIAO ; Xinhua LIU ; Hua JIANG ; Yang HE ; Pei SHEN ; Haitao HUANG ; Yongfeng LI ; Jisi ZHENG ; Jing GUO ; Lisheng ZHAO ; Laiqing XU
Chinese Journal of Stomatology 2024;59(10):977-987
Temporomandibular joint (TMJ) diseases are common clinical conditions. The number of patients with TMJ diseases is large, and the etiology, epidemiology, disease spectrum, and treatment of the disease remain controversial and unknown. To understand and master the current situation of the occurrence, development and prevention of TMJ diseases, as well as to identify the patterns in etiology, incidence, drug sensitivity, and prognosis is crucial for alleviating patients′suffering.This will facilitate in-depth medical research, effective disease prevention measures, and the formulation of corresponding health policies. Cohort construction and research has an irreplaceable role in precise disease prevention and significant improvement in diagnosis and treatment levels. Large-scale cohort studies are needed to explore the relationship between potential risk factors and outcomes of TMJ diseases, and to observe disease prognoses through long-term follw-ups. The consensus aims to establish a standard conceptual frame work for a cohort study on patients with TMJ disease while providing ideas for cohort data standards to this condition. TMJ disease cohort data consists of both common data standards applicable to all specific disease cohorts as well as disease-specific data standards. Common data were available for each specific disease cohort. By integrating different cohort research resources, standard problems or study variables can be unified. Long-term follow-up can be performed using consistent definitions and criteria across different projects for better core data collection. It is hoped that this consensus will be facilitate the development cohort studies of TMJ diseases.
10.Construction and Testing of Health LifeStyle Evidence (HLSE)
Chen TIAN ; Yong WANG ; Yilong YAN ; Yafei LIU ; Yao LU ; Mingyao SUN ; Jianing LIU ; Yan MA ; Jinling NING ; Ziying YE ; Qianji CHENG ; Ying LI ; Jiajie HUANG ; Shuihua YANG ; Yiyun WANG ; Bo TONG ; Jiale LU ; Long GE
Medical Journal of Peking Union Medical College Hospital 2024;15(6):1413-1421
Healthy lifestyles and good living habits are effective strategies and important approaches to prevent chronic non-communicable diseases. With the development of evidence-based medicine, the evidence translation system has made some achievements in clinical practice. There is, however, no comprehensive, professional and efficient system for translating lifestyle evidence globally. Therefore, the Health Lifestyle Evidence (HLSE) Group of Lanzhou University constructed the HLSE Evidence Translation System (

Result Analysis
Print
Save
E-mail