1.The Role and Mechanism of Lactate Produced by Exercise in The Nervous System
Jing MA ; Shu-Min BO ; Yang CHENG
Progress in Biochemistry and Biophysics 2025;52(2):348-357
Lactate, with a chemical formula of C3H6O3, is an intermediate product of glucose metabolism in the body and a raw material for hepatic gluconeogenesis. Under physiological resting conditions, the body mainly relies on aerobic oxidation of sugar and fat for energy supply, so the blood lactate concentration is lower. However, during exercise, the enhanced glycolysis in skeletal muscles leads to the significant release of lactate into the bloodstream, causing a marked increase in blood lactate concentration. Traditionally, lactate has been regarded as a metabolic waste product of glycolysis and a contributor to exercise-induced fatigue. Nevertheless, recent studies have revealed that, in humans, lactate is a major vehicle for carbohydrate carbon distribution and metabolism, serving not only as an energy substance alongside glucose but also as a vital component in various biological pathways involved in cardiac energetics, muscle adaptation, brain function, growth and development, and inflammation therapy. Two primary pathways can elevate lactate levels in neurons during exercise. One is peripheral skeletal muscle-derived lactate, which can enter the bloodstream and cross the blood-brain barrier into the brain with the assistance of monocarboxylate transporters (MCTs) from the solute carrier family 16 (SLC16). The other is the central brain-derived pathway. During exercise, neuronal activity is enhanced, promoting the secretion of neuroactive substances such as glutamate, norepinephrine, and serotonin in the brain. This activates astrocytes to break down glycogen into lactate and stimulates glutamate from the presynaptic terminal into the synaptic cleft. It upregulates the glucose transport protein-1 (GLUT-1) expression, allowing astrocytes to convert glucose into lactate through glycolysis. The lactate is produced via peripheral pathways and central pathways during exercise are transported by astrocyte membrane monocarboxylate transporters MCT1 and MCT4 to the extracellular space, where neurons take it up through neuronal cell membrane MCT2. The lactate in neurons can serve as an alternative energy source of glucose for neuronal functional activities, meeting the increased energy demands of synaptic activity during exercise, and maintaining energy balance and normal physiological function in the brain. Additionally, acting as a signaling molecule lactate can enhance synaptic plasticity through the SIRT1/PGC-1α/FNDC5 and ERK1/2 signaling pathways, lactate can promote angiogenesis by upregulating VEGF-A expression through the PI3K/Akt and ERK1/2 signaling pathways, stimulate neurogenesis via the Akt/PKB signaling pathway, and reduce neuroinflammation through activation of the “lactate timer”. Overall, lactate contributes to the protection of neurons, the promotion of learning and memory, the enhancement of synaptic plasticity, and the reduction of neuroinflammation in the nervous system. While lactate may serve as a potential mediator for information exchange between the peripheral and central nervous systems during exercise, further experimental research is needed to elucidate its action mechanisms in the nervous system. In addition, future studies should utilize advanced neurophysiological and molecular biology techniques to uncover the importance of lactate in maintaining brain function and preventing neurological diseases. Accordingly, this article first reviews the historical research on lactate, then summarizes the metabolic characteristics and neuronal sources of lactate, and finally explores the role and mechanisms of exercise-induced lactate in the nervous system, aiming to provide new perspectives and targets for understanding the mechanisms underlying exercise promotion of brain health.
2.Controllability Analysis of Structural Brain Networks in Young Smokers
Jing-Jing DING ; Fang DONG ; Hong-De WANG ; Kai YUAN ; Yong-Xin CHENG ; Juan WANG ; Yu-Xin MA ; Ting XUE ; Da-Hua YU
Progress in Biochemistry and Biophysics 2025;52(1):182-193
ObjectiveThe controllability changes of structural brain network were explored based on the control and brain network theory in young smokers, this may reveal that the controllability indicators can serve as a powerful factor to predict the sleep status in young smokers. MethodsFifty young smokers and 51 healthy controls from Inner Mongolia University of Science and Technology were enrolled. Diffusion tensor imaging (DTI) was used to construct structural brain network based on fractional anisotropy (FA) weight matrix. According to the control and brain network theory, the average controllability and the modal controllability were calculated. Two-sample t-test was used to compare the differences between the groups and Pearson correlation analysis to examine the correlation between significant average controllability and modal controllability with Fagerström Test of Nicotine Dependence (FTND) in young smokers. The nodes with the controllability score in the top 10% were selected as the super-controllers. Finally, we used BP neural network to predict the Pittsburgh Sleep Quality Index (PSQI) in young smokers. ResultsThe average controllability of dorsolateral superior frontal gyrus, supplementary motor area, lenticular nucleus putamen, and lenticular nucleus pallidum, and the modal controllability of orbital inferior frontal gyrus, supplementary motor area, gyrus rectus, and posterior cingulate gyrus in the young smokers’ group, were all significantly different from those of the healthy controls group (P<0.05). The average controllability of the right supplementary motor area (SMA.R) in the young smokers group was positively correlated with FTND (r=0.393 0, P=0.004 8), while modal controllability was negatively correlated with FTND (r=-0.330 1, P=0.019 2). ConclusionThe controllability of structural brain network in young smokers is abnormal. which may serve as an indicator to predict sleep condition. It may provide the imaging evidence for evaluating the cognitive function impairment in young smokers.
3.Research progress on traditional Chinese medicine in the intervention of cerebral ischemia reperfusion injury by regulating NLRP3 inflammasome
Haoge CHENG ; Chenfei HE ; Chunlong RAN ; Chiyuan MA ; Xiangzhe LIU
China Pharmacy 2025;36(2):245-250
Cerebral ischemia reperfusion injury (CIRI) is a secondary brain injury that may occur in patients with ischemic stroke during the process of blood flow recovery. NOD-like receptor protein 3 (NLRP3) inflammasome plays an important role in the occurrence and development of CIRI. Regulating the activity of NLRP3 inflammasome can induce cell pyroptosis, induce neuroinflammatory response, promote macrophage/microglial polarization, destroy the blood-brain barrier, affect angiogenesis and neurogenesis, thereby affecting CIRI. Traditional Chinese medicine has obvious advantages in the treatment of CIRI. In this paper, with NLRP3 inflammasome as the core, we systematically elucidated the mechanism of action of traditional Chinese medicines on CIRI, and found that traditional Chinese medicines monomers (such as baicalin, polygalasaponin F) and traditional Chinese medicines compound formulas (such as Huangqi guizhi wuwu decoction, Yiqi shengqing formulation) can inhibit NLRP3 inflammasome activity, reduce inflammatory response and oxidative stress, and improve neuronal injury, thereby reducing CIRI.
4.Research progress on traditional Chinese medicine in the intervention of cerebral ischemia reperfusion injury by regulating NLRP3 inflammasome
Haoge CHENG ; Chenfei HE ; Chunlong RAN ; Chiyuan MA ; Xiangzhe LIU
China Pharmacy 2025;36(2):245-250
Cerebral ischemia reperfusion injury (CIRI) is a secondary brain injury that may occur in patients with ischemic stroke during the process of blood flow recovery. NOD-like receptor protein 3 (NLRP3) inflammasome plays an important role in the occurrence and development of CIRI. Regulating the activity of NLRP3 inflammasome can induce cell pyroptosis, induce neuroinflammatory response, promote macrophage/microglial polarization, destroy the blood-brain barrier, affect angiogenesis and neurogenesis, thereby affecting CIRI. Traditional Chinese medicine has obvious advantages in the treatment of CIRI. In this paper, with NLRP3 inflammasome as the core, we systematically elucidated the mechanism of action of traditional Chinese medicines on CIRI, and found that traditional Chinese medicines monomers (such as baicalin, polygalasaponin F) and traditional Chinese medicines compound formulas (such as Huangqi guizhi wuwu decoction, Yiqi shengqing formulation) can inhibit NLRP3 inflammasome activity, reduce inflammatory response and oxidative stress, and improve neuronal injury, thereby reducing CIRI.
5.Anatomical Importance Between Neural Structure and Bony Landmark in Neuroventral Decompression for Posterior Endoscopic Cervical Discectomy
Xin WANG ; Tao HU ; Chaofan QIN ; Bo LEI ; Mingxin CHEN ; Ke MA ; Qingyan LONG ; Qingshuai YU ; Si CHENG ; Zhengjian YAN
Neurospine 2025;22(1):286-296
Objective:
This study aims to investigate the anatomical relationship among the nerve roots, intervertebral space, pedicles, and intradural rootlets of the cervical spine for improving operative outcomes and exploring neuroventral decompression approach in posterior endoscopic cervical discectomy (PECD).
Methods:
Cervical computed tomography myelography imaging data from January 2021 to May 2023 were collected, and the RadiAnt DICOM Viewer Software was employed to conduct multiplane reconstruction. The following parameters were recorded: width of nerve root (WN), nerve root-superior pedicle distance (NSPD), nerve root-inferior pedicle distance (NIPD), and the relationship between the intervertebral space and the nerve root (shoulder, anterior, and axillary). Additionally, the descending angles between the spinal cord and the ventral (VRA) and dorsal (DRA) rootlets were measured.
Results:
The WN showed a gradual increase from C4 to C7, with measurements notably larger in men compared to women. The NSPD decreased gradually from the C2–3 to the C5–6 levels. However, the NIPD showed an opposite level-related change, notably larger than the NSPD at the C4–5, C5–6, and C7–T1 levels. Furthermore, significant differences in NIPD were observed between different age groups and genders. The incidence of the anterior type exhibited a gradual decrease from the C2–3 to the C5–6 levels. Conversely, the axillary type exhibited an opposite level-related change. Additionally, the VRA and DRA decreased as the level descended, with measurements significantly larger in females.
Conclusion
A prediction of the positional relationship between the intervertebral space and the nerve root is essential for the direct neuroventral decompression in PECD to avoid damaging the neural structures. The axillary route of the nerve root offers a safer and more effective pathway for performing direct neuroventral decompression compared to the shoulder approach.
6.Introduction of the main addition and revision of the Chinese Pharmacopoeia 2025 Edition(Volume Ⅱ)
ZHOU Yi ; WANG Zhijun ; YUE Zhihua ; CHENG Qilei ; YUE Ruiqi ; YANG Xi ; GUO Wei ; MA Shuangcheng
Drug Standards of China 2025;26(1):023-027
The Pharmacopeia of the People’s Republic of China 2025 Edition (referred to as the Chinese Pharmacopoeia 2025 Edition, ChP 2025) will be promulgated and implemented. This article introduces the process of development of ChP 2025 Edition (Volume Ⅱ), including the selection, the revision of general notices,the addition and revision of drug monographs, etc., and provides some analysis and examples to illustrate,which can facilitate the readers to understand and implement the ChP 2025 Edition (Volume Ⅱ).
7.Interpretation and thoughts on the formulation and revision of the standards for exogenous harmful residues in traditional Chinese medicinal materials in the Chinese Pharmacopoeia 2025 Edition
WANG Ying ; SHEN Mingrui ; LIU Yuanxi ; ZUO Tiantian ; WANG Dandan ; HE Yi ; CHENG Xianlong ; JIN Hongyu ; LIU Yongli ; WEI Feng ; MA Shuangcheng
Drug Standards of China 2025;26(1):083-092
As people’s attention to health continues to increase, the market demand for traditional Chinese medicine (TCM) is growing steadily. The quality and safety of Chinese medicinal materials have attracted unprecedented social attention. In particular, the issue of exogenous harmful residue pollution in TCM has become a hot topic of concern for both regulatory authorities and society. The Chinese Pharmacopoeia 2025 Edition further refines the detection methods and limit standards for exogenous harmful residues in TCM. This not only reflects China’s high-level emphasis on the quality and safety of TCM but also demonstrates the continuous progress made by China in the field of TCM safety supervision. Basis on this study, by systematically reviewing the development history of the detection standards for exogenous harmful residues in TCM and analyzing the revisions and updates of these detection standards in the Chinese Pharmacopoeia 2025 Edition, deeply explores the key points of the changes in the monitoring standards for exogenous harmful residues in TCM in the Chinese Pharmacopoeia 2025 Edition. Moreover, it interprets the future development directions of the detection of exogenous residues in TCM, aiming to provide a reference for the formulation of TCM safety supervision policies.
8.Clinical characteristics and risk factors for adverse outcomes in omphalocele
Wei SHI ; Mingyu HAN ; Zheng CHEN ; Xiaoying CHENG ; Junjin CHEN ; Peng WANG ; Jinfa TOU ; Liping SHI ; Xiaolu MA
Chinese Journal of Pediatrics 2025;63(1):43-49
Objective:To investigate the clinical characteristics of omphalocele, and to assess the risk factors associated with adverse outcomes.Methods:A retrospective cohort study was conducted. Clinical data of 224 patients diagnosed with omphalocele, who were hospitalized at Children′s Hospital, Zhejiang University School of Medicine from January 2013 to December 2022, were collected. Based on their discharge outcomes, the patients were classified into 2 groups: favorable outcomes and unfavorable outcomes. Chi-square test or continuity correction χ2 test or Fisher exact probability method, and Mann-Whitney U test were used for intergroup comparisons. Logistic regression analysis was performed to identify risk factors associated with adverse outcomes in omphalocele. Results:Among the 224 patients with omphalocele, 126 were male. A total of 208 patients (92.9%) had favorable outcomes, while 16 patients (7.1%) had unfavorable outcomes. In the unfavorable outcomes group, 14 patients had giant omphaloceles, while 100 patients had giant omphaloceles in the favorable outcomes group. The rates of herniation of more than two intra-abdominal organs in the hernial sac, congenital heart defects, patent ductus arteriosus, pulmonary hypertension, sepsis and infection of the hernial sac, were all higher in the unfavorable outcomes group compared to the favorable outcomes group (all P<0.05). Patients with unfavorable outcomes had longer mechanical ventilation time, duration of oxygen use, duration of parenteral nutrition, hospital stays, and higher rates of parenteral nutrition-associated cholestasis compared to those with favorable outcomes (all P<0.01). Multivariate Logistic regression analysis indicated that pulmonary hypertension ( OR=9.39, 95% CI 1.20-73.32), sepsis ( OR=8.59, 95% CI 1.32-55.86), and congenital heart defects ( OR=6.55, 95% CI 1.11-38.73) were all independent risk factors for adverse outcomes in omphalocele (all P<0.05). Conclusions:Infants with omphalocele are prone to complications such as cardiovascular malformations, infections, and pulmonary hypertension. Adverse outcomes in omphalocele are associated with pulmonary hypertension, sepsis, and congenital heart defects.
9.Clinical Observation on Treatment of Hip Joint Pain with Mailuoning Compound Solution via Nerve Blocks around Hip Joint
Tao JIN ; Fuchang MA ; Cheng HUANG ; Manxia ZHI ; Ming YA
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(8):152-158
ObjectiveTo observe the clinical efficacy and safety of Mailuoning compound solution in the treatment of hip joint pain via nerve blocks around the hip joint. MethodsFrom March 2015 to March 2019,a total of 136 patients with hip joint pain who met the inclusion criteria were admitted and divided into an observation group and a control group according to the random number table method. Among them,six cases fell off due to failure to complete five treatments,and finally, 130 patients entered clinical observation,with 65 cases in each group. The observation group used Mailuoning compound solution for nerve blocks around the hip joint(including obturator nerve,femoral nerve branch,superior gluteal nerve, and hip fascia). The control used Mailuoning compound solution for a simple obturator nerve block. The differences in the visual analogue scale (VAS) and Harris score of hip joint of the two groups before and after treatment were observed. Any adverse drug reactions and adverse events during the treatment of the patients were recorded. ResultsThe VAS score of the two groups was significantly decreased after treatment (P<0.01). The observation group had a more significant decrease compared to the control group(P<0.01). The total Harris score of hip joint, pain degree,function score, and motion of joint of the two groups were significantly improved after treatment (P<0.01). Compared with the control group,the improvement in the total Harris score of hip joint, pain degree,and function score was more significant in the observation group (P<0.01). The clinical efficacy based on the Harris score of hip joint of the two groups was compared. The excellent and good rate of the observation group was 84.62% (55/65), which was significantly better than that of the control group [56.92% (37/65)] (χ2=12.05,P<0.01). The follow-up results showed that the patients who achieved excellent and good results had stable curative effects and low recurrence rates,and there was no significant difference in recurrence rate between the two groups. Case analysis showed that after treatment of femoral head necrosis,the saccular transparent shadow of the femoral head was significantly reduced,and the number of bone trabeculae increased. The low-density shadow decreased as can be seen on hip X-rays. In patients with hip osteoporosis after treatment,the number of bone trabeculae increased, and the low density shadow reduced. ConclusionThe use of Mailuoning compound solution for nerve blocks around the hip joint gives full play to the synergistic effect of Mailuoning compound solution and nerve block. It can effectively relieve hip joint pain,promote the recovery of hip joint function,reduce the disability rate,and improve the quality of life of patients. Early intervention is an important link in the treatment of hip joint pain diseases,which can effectively control the development of the patient's disease. Mailuoning compound solution is a new idea and method to treat hip joint pain through neuroregulation,which is easy to operate,with high safety and good therapeutic effect. In future studies,a larger sample size is needed,and more in-depth research should be conducted on the imaging changes and mechanisms of action for various hip joint pain diseases.
10.Research progress on antimicrobial materials modified root canal sealers
MA Jinyi ; LI Bolei ; CHENG Lei
Journal of Prevention and Treatment for Stomatological Diseases 2025;33(3):237-243
Endodontic and periapical lesions are prevalent infectious diseases primarily caused by bacteria and their metabolic byproducts. The most widely used treatment method today is root canal therapy, which aims to remove infectious substances from the root canal. Root canal sealers can fill areas that core filling materials cannot reach, effectively reducing the risk of reinfection through their antimicrobial properties thus improving the success rate of root canal treatment. Various strategies have been employed to enhance the antimicrobial efficacy of root canal sealers through different mechanisms such as mechanical interlocking or chemical bonding. These strategies include antibiotic modification, quaternary ammonium compounds modification, nanoparticle modification, and others. Overall, antimicrobial modification strategies are increasingly diverse, and their effectiveness in enhancing the antimicrobial properties of sealers is beyond doubt. Root canal sealers modified with quaternary ammonium compounds and nanoparticles have shown certain advantages in antibiofilm activity and have potential clinical prospects. However, whether these modified materials have long-term antimicrobial effects, whether they can perform similarly in vivo as they do in vitro, and their biocompatibility are issues that still need to be addressed. In the future, the preparation of root canal sealers with ideal multidimensional properties will require further long-term and in-depth exploration.


Result Analysis
Print
Save
E-mail