1.Mechanism of Action of Kaixinsan in Ameliorating Alzheimer's Disease
Xiaoming HE ; Xiaotong WANG ; Dongyu MIN ; Xinxin WANG ; Meijia CHENG ; Yongming LIU ; Yetao JU ; Yali YANG ; Changbin YUAN ; Changyang YU ; Li ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(1):20-29
ObjectiveTo investigate the mechanism of action of Kaixinsan in the treatment of Alzheimer's disease (AD) based on network pharmacology, molecular docking, and animal experimental validation. MethodsThe Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP) and the Encyclopedia of Traditional Chinese Medicine(ETCM) databases were used to obtain the active ingredients and targets of Kaixinsan. GeneCards, Online Mendelian Inheritance in Man(OMIM), TTD, PharmGKB, and DrugBank databases were used to obtain the relevant targets of AD. The intersection (common targets) of the active ingredient targets of Kaixinsan and the relevant targets of AD was taken, and the network interaction analysis of the common targets was carried out in the STRING database to construct a protein-protein interaction(PPI) network. The CytoNCA plugin within Cytoscape was used to screen out the core targets, and the Metascape platform was used to perform gene ontology(GO) functional enrichment analysis and Kyoto encyclopedia of genes and genomes(KEGG) pathway enrichment analysis. The “drug-active ingredient-target” interaction network was constructed with the help of Cytoscape 3.8.2, and AutoDock Vina was used for molecular docking. Scopolamine (SCOP) was utilized for modeling and injected intraperitoneally once daily. Thirty-two male C57/BL6 mice were randomly divided into blank control (CON) group (0.9% NaCl, n=8), model (SCOP) group (3 mg·kg-1·d-1, n=8), positive control group (3 mg·kg-1·d-1 of SCOP+3 mg·kg-1·d-1 of Donepezil, n=8), and Kaixinsan group (3 mg·kg-1·d-1 of SCOP+6.5 g·kg-1·d-1 of Kaixinsan, n=8). Mice in each group were administered with 0.9% NaCl, Kaixinsan, or Donepezil by gavage twice a day for 14 days. Morris water maze experiment was used to observe the learning memory ability of mice. Hematoxylin-eosin (HE) staining method was used to observe the pathological changes in the CA1 area of the mouse hippocampus. Enzyme linked immunosorbent assay(ELISA) was used to determine the serum acetylcholine (ACh) and acetylcholinesterase (AChE) contents of mice. Western blot method was used to detect the protein expression levels of signal transducer and activator of transcription 3(STAT3) and nuclear transcription factor(NF)-κB p65 in the hippocampus of mice. ResultsA total of 73 active ingredients of Kaixinsan were obtained, and 578 potential targets (common targets) of Kaixinsan for the treatment of AD were screened out. Key active ingredients included kaempferol, gijugliflozin, etc.. Potential core targets were STAT3, NF-κB p65, et al. GO functional enrichment analysis obtained 3 124 biological functions, 254 cellular building blocks, and 461 molecular functions. KEGG pathway enrichment obtained 248 pathways, mainly involving cancer-related pathways, TRP pathway, cyclic adenosine monophosphate(cAMP) pathway, and NF-κB pathway. Molecular docking showed that the binding of the key active ingredients to the target targets was more stable. Morris water maze experiment indicated that Kaixinsan could improve the learning memory ability of SCOP-induced mice. HE staining and ELISA results showed that Kaixinsan had an ameliorating effect on central nerve injury in mice. Western blot test indicated that Kaixinsan had a down-regulating effect on the levels of NF-κB p65 phosphorylation and STAT3 phosphorylation in the hippocampal tissue of mice in the SCOP model. ConclusionKaixinsan can improve the cognitive impairment function in SCOP model mice and may reduce hippocampal neuronal damage and thus play a therapeutic role in the treatment of AD by regulating NF-κB p65, STAT3, and other targets involved in the NF-κB signaling pathway.
2.Combination of Components from Tripterygii Radix et Rhizoma-Chuanxiong Rhizoma Affects RA-FLSs by Regulating NF-κB, Nrf2/HO-1 Signaling Pathways and Bcl-2/Caspase-3 Expression
Yongmei GUAN ; Zhiyan WAN ; Shuhui WANG ; Weifeng ZHU ; Zhiyong LIU ; Cheng JIANG ; Zhenzhong ZANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(2):17-26
ObjectiveTo investigate the effects of the combination of components from Tripterygii Radix et Rhizoma and Chuanxiong Rhizoma on rheumatoid arthritis fibroblast-like synoviocytes (RA-FLSs) and the underlying mechanism. MethodsRA-FLSs were grouped as follows: blank control, positive control (methotrexate), Tripterygii Radix et Rhizoma components, Chuanxiong Rhizoma components, and components from Tripterygii Radix et Rhizoma+Chuanxiong Rhizoma. The cell-counting kit-8 (CCK-8) assay was employed to the cell proliferation, invasion, and apoptosis. The levels of tumor necrosis factor (TNF)-α, interleukin (IL)-6, reactive oxygen species (ROS), and malondiadehyde (MDA) in cells were measured. Western blot was employed to determine the protein levels of nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), nuclear factor-kappa B (NF-κB) p65, phosphorylated inhibitory subunit of NF-κBα (p-IκBα), cysteinyl aspartate-specific protease-3 (Caspase-3), and B-cell lymphoma 2 (Bcl-2). Real-time PCR was employed to determine the mRNA levels of Nrf2, HO-1, and NF-κB p65. ResultsThe cells in the groups of positive control, Tripterygii Radix et Rhizoma components, Chuanxiong Rhizoma components, and components from Tripterygii Radix et Rhizoma+Chuanxiong Rhizoma were treated with 2.50 mg·L-1 methotrexate, 0.20 mg·L-1 triptolide + 0.20 mg·L-1 celastrol, 5.00 mg·L-1 ferulic acid + 20.00 mg·L-1 ligustrazine, 0.20 mg·L-1 triptolide + 0.20 mg·L-1 celastrol + 5.00 mg·L-1 ferulic acid + 20.00 mg·L-1 ligustrazine, respectively. Compared with the blank control group, drug administration reduced the proliferation and invasion and increased the apoptosis of cells (P<0.01), lowered the levels of TNF-α, IL-6, ROS, and MDA (P<0.01), up-regulated the mRNA and protein levels of Caspase-3, Nrf2, and HO-1 (P<0.01), and down-regulated the mRNA and protein levels of Bcl-2, NF-κB p65, and p-IκBα (P<0.01). Compared with the Tripterygii Radix et Rhizoma components group, the combination of components from Tripterygii Radix et Rhizoma+Chuanxiong Rhizoma inhibited the proliferation and invasion (P<0.05) and promoted the apoptosis of RA-FLSs, up-regulated the mRNA levels of Nrf2 and HO-1 and protein levels of Nrf2 and Caspase-3 (P<0.05), and down-regulated the protein levels of NF-κB p65 and p-IκBα (P<0.05). ConclusionThe combination of components from Chuanxiong Rhizoma and Tripterygii Radix et Rhizoma can inhibit the proliferation and invasion and promote the apoptosis of RA-FLSs and alleviate oxidative stress and inflammation by inhibiting the NF-κB signaling pathway, activating the Nrf2/HO-1 pathway, and regulating the expression of Bcl-2/Caspase-3.
3.Effect of Wulao Qisun Prescription on Proliferation and Osteogenic Differentiation of AS Fibroblasts by Regulating Wnt/β-catenin Signaling Pathway
Juanjuan YANG ; Ping CHEN ; Haidong WANG ; Zhendong WANG ; Haolin LI ; Zhimin ZHANG ; Yuping YANG ; Weigang CHENG ; Jin SU ; Jingjing SONG ; Dongsheng LU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(2):67-73
ObjectiveTo investigate the effect and underlying mechanism of the Wulao Qisun prescription on pathological new bone formation in ankylosing spondylitis (AS). MethodsSynovial fibroblasts were isolated from the hip joints of AS patients and observed under a microscope to assess cell morphology. The cells were identified using immunofluorescence staining. The isolated AS fibroblasts were divided into blank group, low drug-containing serum group, medium drug-containing serum group, high drug-containing serum group, and positive drug group. After drug intervention, cell proliferation was measured using the cell counting kit-8 (CCK-8) assay to observe fibroblast growth and determine the optimal intervention time. Alkaline phosphatase (ALP) activity was measured using the alkaline phosphatase assay. Protein expression of osteocalcin (OCN), osteopontin (OPN), and runt-related transcription factor 2 (Runx2) was detected by Western blot. The mRNA expression levels of Wnt5a, β-catenin, and Dickkopf-1 (DKK-1) were measured by real-time quantitative polymerase chain reaction (Real-time PCR). ResultsCompared with the blank group, each drug-containing serum group of Wulao Qisun prescription and the positive drug group inhibited the proliferation of AS fibroblasts and reduced ALP expression (P<0.01). Compared with the blank group, the low drug-containing serum group of Wulao Qisun prescription downregulated β-catenin mRNA expression (P<0.05). The medium and high drug-containing serum groups and the positive drug group significantly downregulated Wnt5a and β-catenin mRNA expression (P<0.05, P<0.01), with the positive drug group showing the most pronounced effect (P<0.01). The high drug-containing serum group and the positive drug group significantly upregulated DKK-1 mRNA expression (P<0.01). Compared with the blank group, the low drug-containing serum group of Wulao Qisun prescription inhibited the expression of OPN and Runx2 proteins (P<0.05, P<0.01), while the medium and high drug-containing serum groups and the positive drug group inhibited the expression of OCN, OPN, and Runx2 proteins (P<0.05, P<0.01). ConclusionThe Wulao Qisun prescription can inhibit the proliferation and osteogenic differentiation of AS fibroblasts, thereby delaying the formation of pathological new bone in AS. The possible mechanism involves the regulation of Wnt/β-catenin-related gene expression, further inhibiting the transcription of downstream target genes.
4.Active Components of Salviae Miltiorrhizae Radix et Rhizoma and Its Compound in Treatment of Nervous System Diseases: A Review
Weining SONG ; Shuxiang ZHANG ; Fang LU ; Zhize WANG ; Ruyang CHENG ; Shumin LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(2):303-313
Nervous system diseases, also known as neuropathies, encompass a wide range of conditions, primarily including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease, and other neurodegenerative disorders, as well as depression, subarachnoid hemorrhage, cerebral ischemia-reperfusion injury, vascular dementia, and other neurological diseases. These diseases pose serious threats to the health and lives of patients, bringing heavy burdens to society and families. The pathogenesis of nervous system diseases is highly complex, involving mechanisms such as neuroinflammation, oxidative stress, apoptosis, endoplasmic reticulum stress, mitochondrial dysfunction, brain-derived neurotrophic factor deficiency, reduced cholinergic activity, axonal injury, and demyelination. In recent years, the incidence and mortality of nervous system diseases have been rising annually. Currently, western medicine primarily focuses on symptomatic treatment, often accompanied by many adverse reactions, including lethargy, excessive sedation, dizziness, headaches, tachycardia, liver function damage, metabolic disorders, and incomplete recovery after surgery. As a traditional Chinese medicine, Salviae Miltiorrhizae Radix et Rhizoma has effects such as promoting blood circulation, removing blood stasis, cooling the blood, clearing the heart, nourishing the blood, and calming the nerves. It can play a role in the treatment and protection against nervous system diseases through multiple targets, pathways, and mechanisms. Studies have found that the water-soluble phenolic acids and fat-soluble diterpenoid quinones in Salviae Miltiorrhizae Radix et Rhizoma are the main active ingredients for the treatment of nervous system diseases. This paper summarized the effects of the active components and compounds of Salviae Miltiorrhizae Radix et Rhizoma on nervous system diseases over the past ten years, aiming to provide a theoretical basis and research ideas for the development and application of active components and compounds of Salviae Miltiorrhizae Radix et Rhizoma in nervous system diseases.
5.Qingre Sanzhuo Decoction Treats Gouty Arthritis Combined with Hyperuricaemia in Rats via NLRP3/ASC/Caspase-1 Pathway
Haolin LI ; Qian BAI ; Weigang CHENG ; Weiqing LI ; Juanjuan YANG ; Peixin HE ; Huijun YANG ; Haidong WANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(3):49-57
ObjectiveTo investigate the effect and mechanism of Qingre Sanzhuo decoction in treating gouty arthritis (GA) combined with hyperuricaemia (HUA). MethodsSixty male SD rats were randomized into normal, model, colchicine (0.5 mg·kg-1), and low-, medium-, and high-dose (17, 34, 68 g·kg-1, respectively) Qingre Sanzhuo decoction groups (n=10). The rats in other groups except the normal group were treated with the modified method for the modeling of GA combined with HUA. The drug intervention groups were administrated with corresponding drugs by gavage in the afternoon every day and the normal group and the model group were administrated with an equal volume of sterile normal saline by gavage. The level of uric acid (SUA) in the serum was measured 2 h after the last administration. The degree of ankle joint swelling was calculated 0.5, 12, 24, 48 h after modeling, and joint inflammation was scored. The pathological changes of ankle joints were observed by hematoxylin-eosin staining, and the serum levels of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), C reactive protein (CRP), and interleukin-18 (IL-18) were measured by enzyme-linked immunosorbent assay. Real-time PCR was performed to determine the mRNA levels of NOD-like receptor protein 3 (NLRP3), apoptosis-associated speck-like protein containing CARD (ASC), cysteinyl aspartate-specific protease-1 (Caspase-1), gasdermin D (GSDMD), and nuclear factor-kappa B (NF-κB) in the synovial tissue of ankle joints. Western blot was employed to determine the protein levels of NLRP3, ASC, and Caspase-1 in ankle joints. The immunohistochemical method was used to detect the expression of GSDMD and NF-κB in the synovial tissue of ankle joints. ResultsCompared with the normal group, the model group showed increased SUA in the serum (P<0.05), ankle joint swelling and joint inflammation (P<0.05), increased number of blood vessels in the synovium, inflammatory cell foci in the synovial bursa, elevated serum levels of TNF-α, IL-1β, CRP, and IL-18 (P<0.05), and up-regulated mRNA and protein levels of NLRP3, ASC, Caspase-1, GSDMD, and NF-κB in the synovial tissue of ankle joints (P<0.05). Compared with the model group, the medium- and high-dose Qingre Sanzhuo decoction groups showed reduced SUA in the serum (P<0.05), alleviated ankle joint swelling and joint inflammation (P<0.05), lowered serum levels of TNF-α, IL-1β, CRP, and IL-18 (P<0.05), and down-regulated mRNA and protein levels of NLRP3, ASC, Caspase-1, GSDMD, and NF-κB in the synovial tissue of ankle joints (P<0.05). However, in terms of ameliorating the pathological changes of ankle joints, only the high-dose Qingre Sanzhuo decoction group showed normal morphology of the synovial membrane of ankle joints and no obvious lesion in the articular cartilage. ConclusionQingre Sanzhuo decoction may play a role in preventing and controlling GA combined with HUA by down-regulating the activity of NLRP3/ASC/Caspase-1 pathway and inhibiting the expression of inflammatory cytokines, such as TNF-α, IL-1β, CRP, and IL-18.
6.Naoqingtong Decoction Ameliorates Kidney Damage in Spontaneously Hypertensive Rats via NLRP3 Inflammasomes
Jiaxin JU ; Caocao CHENG ; Teng GE ; Yalong KANG ; Fang GUAN ; Haifang WANG ; Juanjuan TAN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(4):125-131
ObjectiveTo investigate the effect of Naoqingtong decoction (NQT) on the kidney damage and the inflammatory factors NOD-like receptor protein 3 (NLRP3), apoptosis-associated speck-like protein containing a C-terminal caspase recruitment domain (ASC), cysteinyl aspartate-specific proteinase-1 (Caspase-1), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) in spontaneously hypertensive rats (SHRs). MethodsTwenty-four SHRs were randomized into a model group, a low-dose (12.9 g·kg-1·d-1) NQT (NQT-L) group, a high-dose (25.8 g·kg-1·d-1) NQT group (NQT-H), and a captopril (CTP, 20 mg·kg-1·d-1) group, with 6 rats in each group. In addition, 6 homozygous male Wistar-Kyoto rats were used as the control group. The control and model groups were administrated with the same amount of normal saline by gavage for 8 weeks. General behaviors of rats were observed during the intervention period, and the blood pressure was measured periodically. At the end of intervention, the body mass was weighed, and both kidneys were collected and weighed for the calculation of the renal index. Hematoxylin-eosin staining was performed to observe the pathological changes in the kidney tissue. Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) and Western blot were employed to determine the expression levels of NLRP3, ASC, Caspase-1, IL-6, and TNF-α in the kidney tissue. ResultsDuring the experiment period, the control group had normal mental status, food intake, and activity, while the model group showed thinning of hair, loss of luster, reduced activity, loss of appetite, fecal adhesion, and irritability, and some of the skin had scratches or blood scabs. The above symptoms were alleviated to different degrees after 8 weeks of NQT administration. An intelligent non-invasive sphygmomanometer was used to measure the tail artery pressure of rats, which showed that the systolic and diastolic blood pressure of rats in the model group was higher than that in the control group (P<0.01). Compared with the model group, drug interventions lowered the systolic and diastolic blood pressure (P<0.05, P<0.01). Compared with the control group, the model group showed severe pathological damage in the kidney tissue, which was alleviated in each drug intervention group. Compared with the control group, the model group showed up-regulated expression levels of NLRP3, ASC, Caspase-1, IL-6, and TNF-α in the kidney tissue (P<0.05, P<0.01). Compared with the model group, the drug intervention groups showed down-regulated expression levels of NLRP3, ASC, Caspase-1, IL-6, and TNF-α in the kidney tissue (P<0.05, P<0.01). ConclusionNQT can lower the blood pressure in SHRs by inhibiting the activation of NLRP3 inflammasomes, suppressing renal inflammation, and ameliorating hypertensive kidney damage.
7.Role of Innate Trained Immunity in Diseases
Chuang CHENG ; Yue-Qing WANG ; Xiao-Qin MU ; Xi ZHENG ; Jing HE ; Jun WANG ; Chao TAN ; Xiao-Wen LIU ; Li-Li ZOU
Progress in Biochemistry and Biophysics 2025;52(1):119-132
The innate immune system can be boosted in response to subsequent triggers by pre-exposure to microbes or microbial products, known as “trained immunity”. Compared to classical immune memory, innate trained immunity has several different features. Firstly, the molecules involved in trained immunity differ from those involved in classical immune memory. Innate trained immunity mainly involves innate immune cells (e.g., myeloid immune cells, natural killer cells, innate lymphoid cells) and their effector molecules (e.g., pattern recognition receptor (PRR), various cytokines), as well as some kinds of non-immune cells (e.g., microglial cells). Secondly, the increased responsiveness to secondary stimuli during innate trained immunity is not specific to a particular pathogen, but influences epigenetic reprogramming in the cell through signaling pathways, leading to the sustained changes in genes transcriptional process, which ultimately affects cellular physiology without permanent genetic changes (e.g., mutations or recombination). Finally, innate trained immunity relies on an altered functional state of innate immune cells that could persist for weeks to months after initial stimulus removal. An appropriate inducer could induce trained immunity in innate lymphocytes, such as exogenous stimulants (including vaccines) and endogenous stimulants, which was firstly discovered in bone marrow derived immune cells. However, mature bone marrow derived immune cells are short-lived cells, that may not be able to transmit memory phenotypes to their offspring and provide long-term protection. Therefore, trained immunity is more likely to be relied on long-lived cells, such as epithelial stem cells, mesenchymal stromal cells and non-immune cells such as fibroblasts. Epigenetic reprogramming is one of the key molecular mechanisms that induces trained immunity, including DNA modifications, non-coding RNAs, histone modifications and chromatin remodeling. In addition to epigenetic reprogramming, different cellular metabolic pathways are involved in the regulation of innate trained immunity, including aerobic glycolysis, glutamine catabolism, cholesterol metabolism and fatty acid synthesis, through a series of intracellular cascade responses triggered by the recognition of PRR specific ligands. In the view of evolutionary, trained immunity is beneficial in enhancing protection against secondary infections with an induction in the evolutionary protective process against infections. Therefore, innate trained immunity plays an important role in therapy against diseases such as tumors and infections, which has signature therapeutic effects in these diseases. In organ transplantation, trained immunity has been associated with acute rejection, which prolongs the survival of allografts. However, trained immunity is not always protective but pathological in some cases, and dysregulated trained immunity contributes to the development of inflammatory and autoimmune diseases. Trained immunity provides a novel form of immune memory, but when inappropriately activated, may lead to an attack on tissues, causing autoinflammation. In autoimmune diseases such as rheumatoid arthritis and atherosclerosis, trained immunity may lead to enhance inflammation and tissue lesion in diseased regions. In Alzheimer’s disease and Parkinson’s disease, trained immunity may lead to over-activation of microglial cells, triggering neuroinflammation even nerve injury. This paper summarizes the basis and mechanisms of innate trained immunity, including the different cell types involved, the impacts on diseases and the effects as a therapeutic strategy to provide novel ideas for different diseases.
8.Controllability Analysis of Structural Brain Networks in Young Smokers
Jing-Jing DING ; Fang DONG ; Hong-De WANG ; Kai YUAN ; Yong-Xin CHENG ; Juan WANG ; Yu-Xin MA ; Ting XUE ; Da-Hua YU
Progress in Biochemistry and Biophysics 2025;52(1):182-193
ObjectiveThe controllability changes of structural brain network were explored based on the control and brain network theory in young smokers, this may reveal that the controllability indicators can serve as a powerful factor to predict the sleep status in young smokers. MethodsFifty young smokers and 51 healthy controls from Inner Mongolia University of Science and Technology were enrolled. Diffusion tensor imaging (DTI) was used to construct structural brain network based on fractional anisotropy (FA) weight matrix. According to the control and brain network theory, the average controllability and the modal controllability were calculated. Two-sample t-test was used to compare the differences between the groups and Pearson correlation analysis to examine the correlation between significant average controllability and modal controllability with Fagerström Test of Nicotine Dependence (FTND) in young smokers. The nodes with the controllability score in the top 10% were selected as the super-controllers. Finally, we used BP neural network to predict the Pittsburgh Sleep Quality Index (PSQI) in young smokers. ResultsThe average controllability of dorsolateral superior frontal gyrus, supplementary motor area, lenticular nucleus putamen, and lenticular nucleus pallidum, and the modal controllability of orbital inferior frontal gyrus, supplementary motor area, gyrus rectus, and posterior cingulate gyrus in the young smokers’ group, were all significantly different from those of the healthy controls group (P<0.05). The average controllability of the right supplementary motor area (SMA.R) in the young smokers group was positively correlated with FTND (r=0.393 0, P=0.004 8), while modal controllability was negatively correlated with FTND (r=-0.330 1, P=0.019 2). ConclusionThe controllability of structural brain network in young smokers is abnormal. which may serve as an indicator to predict sleep condition. It may provide the imaging evidence for evaluating the cognitive function impairment in young smokers.
9.Comprehensive evaluation of benign and malignant pulmonary nodules using combined biological testing and imaging assessment in 1 017 patients: A retrospective cohort study
Lei ZHANG ; Zihao LI ; Nan LI ; Jun CHENG ; Feng ZHANG ; Pinghui XIA ; Wang LÜ ; ; Jian HU
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(01):60-66
Objective By combining biological detection and imaging evaluation, a clinical prediction model is constructed based on a large cohort to improve the accuracy of distinguishing between benign and malignant pulmonary nodules. Methods A retrospective analysis was conducted on the clinical data of the 32 627 patients with pulmonary nodules who underwent chest CT and testing for 7 types of lung cancer-related serum autoantibodies (7-AABs) at our hospital from January 2020 to April 2024. The univariate and multivariate logistic regression models were performed to screen independent risk factors for benign and malignant pulmonary nodules, based on which a nomogram model was established. The performance of the model was evaluated using receiver operating characteristic (ROC) curves, calibration curves, and decision curve analysis (DCA). Results A total of 1 017 patients with pulmonary nodules were included in the study. The training set consisted of 712 patients, including 291 males and 421 females, with a mean age of (58±12) years. The validation set included 305 patients, comprising 129 males and 176 females, with a mean age of (58±13) years. Univariate ROC curve analysis indicated that the combination of CT and 7-AABs testing achieved the highest area under the curve (AUC) value (0.794), surpassing the diagnostic efficacy of CT alone (AUC=0.667) or 7-AABs alone (AUC=0.514). Multivariate logistic regression analysis showed that radiological nodule diameter, nodule nature, and CT combined with 7-AABs detection were independent predictors, which were used to construct a nomogram prediction model. The AUC values for this model were 0.826 and 0.862 in the training and validation sets, respectively, demonstrating excellent performance in DCA. Conclusion The combination of 7-AABs with CT significantly enhances the accuracy of distinguishing between benign and malignant pulmonary nodules. The developed predictive model provides strong support for clinical decision-making and contributes to achieving precise diagnosis and treatment of pulmonary nodules.
10.Inverse distance weight interpolation method for missing data of PM2.5 spatiotemporal series
Yurou LIANG ; Hongling WU ; Weipeng WANG ; Feng CHENG ; Ping DUAN
Journal of Environmental and Occupational Medicine 2025;42(2):171-178
Background Fine particulate matter (PM2.5) monitoring stations may generate missing data for a certain period of time due to various factors. This data loss will adversely affect air quality assessment and pollution control decision-making. Objective To propose an inverse distance weighted (IDW) spatiotemporal interpolation method based on particle swarm optimization (PSO) to interpolate and fill missing PM2.5 spatiotemporal sequence data and increase interpolation accuracy. Methods An interpolation experiment was designed into two parts. The first part used hourly PM2.5 observational data from four moments on January 1, 2017 in the Yangtze River Delta region. The second part employed daily PM2.5 observational data from the first 10 d of January 2017 in the Beijing-Tianjin-Hebei region. Interpolation accuracy was evaluated using four metrics: root mean square error (RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE), and mean relative error (MRE). Results IDW spatiotemporal interpolation method optimized with PSO significantly improved the accuracy of filling missing PM2.5 spatiotemporal sequence data. In the hourly-scale experiment conducted in the Yangtze River Delta region, compared to a distance index of 2, the accuracy metrics RMSE, MAE, MAPE, and MRE generated by the proposed method improved on average by 0.17 μg·m−3, 0.27 μg·m−3, 0.17%, and 0.01%, respectively. The PM2.5 spatial field maps generated for four moments based on this method clearly illustrated the spatiotemporal distribution characteristics of hourly PM2.5 concentrations in the Yangtze River Delta region. In the daily-scale experiment conducted in the Beijing-Tianjin-Hebei region, the PSO-optimized distance index outperformed the traditional method, with interpolation accuracy improvements of approximately 0.215 μg·m−3, 0.283 μg·m−3, 0.174%, and 0.014%, respectively. Furthermore, the seasonal PM2.5 spatial field maps generated by this method revealed the spatiotemporal distribution characteristics of PM2.5 concentrations in the Beijing-Tianjin-Hebei region across different seasons, further validating the effectiveness and applicability of this method. Conclusion The IDW spatiotemporal interpolation method optimized with PSO is highly accurate and reliable for interpolating the missing data in the Yangtze River Delta region and the Beijing-Tianjin-Hebei region, providing valuable insights for air pollution control and public health protection.

Result Analysis
Print
Save
E-mail