1.Controllability Analysis of Structural Brain Networks in Young Smokers
Jing-Jing DING ; Fang DONG ; Hong-De WANG ; Kai YUAN ; Yong-Xin CHENG ; Juan WANG ; Yu-Xin MA ; Ting XUE ; Da-Hua YU
Progress in Biochemistry and Biophysics 2025;52(1):182-193
ObjectiveThe controllability changes of structural brain network were explored based on the control and brain network theory in young smokers, this may reveal that the controllability indicators can serve as a powerful factor to predict the sleep status in young smokers. MethodsFifty young smokers and 51 healthy controls from Inner Mongolia University of Science and Technology were enrolled. Diffusion tensor imaging (DTI) was used to construct structural brain network based on fractional anisotropy (FA) weight matrix. According to the control and brain network theory, the average controllability and the modal controllability were calculated. Two-sample t-test was used to compare the differences between the groups and Pearson correlation analysis to examine the correlation between significant average controllability and modal controllability with Fagerström Test of Nicotine Dependence (FTND) in young smokers. The nodes with the controllability score in the top 10% were selected as the super-controllers. Finally, we used BP neural network to predict the Pittsburgh Sleep Quality Index (PSQI) in young smokers. ResultsThe average controllability of dorsolateral superior frontal gyrus, supplementary motor area, lenticular nucleus putamen, and lenticular nucleus pallidum, and the modal controllability of orbital inferior frontal gyrus, supplementary motor area, gyrus rectus, and posterior cingulate gyrus in the young smokers’ group, were all significantly different from those of the healthy controls group (P<0.05). The average controllability of the right supplementary motor area (SMA.R) in the young smokers group was positively correlated with FTND (r=0.393 0, P=0.004 8), while modal controllability was negatively correlated with FTND (r=-0.330 1, P=0.019 2). ConclusionThe controllability of structural brain network in young smokers is abnormal. which may serve as an indicator to predict sleep condition. It may provide the imaging evidence for evaluating the cognitive function impairment in young smokers.
2.Mechanism of Icariin in Regulating TGF-β1/Smad Pathway to Induce Autophagy in Human Bone Microvascular Endothelial Cells
Yaqi ZHANG ; Yankun JIANG ; Guoyuan SUN ; Bo LI ; Ran DING ; Cheng HUANG ; Weiguo WANG ; Qidong ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(5):123-130
ObjectiveTo investigate the regulatory effect of icariin (ICA) on transforming growth factor-β1 (TGF-β1)/Smad pathway in bone microvascular endothelial cells (BMECs) and the effect on autophagy in BMECs. MethodsBMECs were isolated and cultured, and the cell types were identified by immunofluorescence. Cells were divided into the control group, model group (0.1 g·L-1 methyl prednisolone), ICA group (0.1 g·L-1 methyl prednisolone +1×10-5 mol·L-1 ICA), and TGF-β inhibitor group (0.1 g·L-1 methyl prednisolone +1×10-5 mol·L-1 ICA +1×10-5 mol·L-1 LY2157299). Transmission electron microscopy was used to observe the ultrastructure and autophagosome number of BMECs. Autophagy double-standard adenovirus was used to monitor the confocal autophagy flow generation of each cell. Real-time quantitative polymerase chain reaction (Real-time PCR) and Western blot were used to detect the gene and protein expression of autophagy in the TGF-β1/ Smad pathway. ResultsAfter cell separation culture, platelet endothelial cell adhesion molecule (CD31) and von willebrand factor (vWF) immunofluorescence identified BMECs. Transmission electron microscopy showed that the cell membrane was damaged, and the nucleus was pyknotic and broken in the model group. Compared with the model group, the ICA group had complete cell membranes, clear structures, with autophagy-lysosome sparsely distributed. The confocal photo showed that BMECs had autophagosomes and autophagy-lysosomes, and the autophagy expression of the ICA group was similar to that of the blank group. Compared with the blank group, in the model group and the LY2157299 group, autophagosomes and autophagy-lysosomes were barely seen in the autophagy flow. Compared with the blank group, the mRNA and protein expressions of autophagy effector protein 1 (Beclin1) and microtubule-associated protein 1 light chain 3B (LC3B) in the model group were significantly decreased (P<0.01), and those of ubiquitin-binding protein (p62) were significantly increased (P<0.01). The mRNA expression of TGF-β1, Smad homolog 2 (Smad2), and Smad homolog 3 (Smad3) decreased (P<0.05, P<0.01). The protein expressions of TGF-β1, p-Smad2, and p-Smad3 were significantly decreased (P<0.01). Compared with those of the model group, the mRNA and protein expression of Beclin1 and LC3B in BMECs of the ICA group increased (P<0.01), and those of p62 significantly reduced (P<0.01). The mRNA expression of TGF-β1, Smad2, and Smad3 increased significantly (P<0.01). The protein expression of TGF-β1, p-Smad2, and p-Smad3 increased significantly (P<0.01). Compared with those in the model group, the mRNA and protein expressions of Beclin1, LC3B, and p62 in the inhibitor group were not statistically significant. The expression of key genes and proteins of the TGF-β1 pathway in the inhibitor group was not statistically significant. ConclusionICA can promote glucocorticoid-induced autophagy expression of BMECs, and its mechanism may be related to activating the TGF-β1/Smad signaling pathway.
3.Mechanism of Traditional Chinese Medicine in Treating Steroid-Induced Osteonecrosis of Femoral Head via Regulating PI3K/Akt Pathway: A Review
Yaqi ZHANG ; Bo LI ; Jiancheng TANG ; Ran DING ; Cheng HUANG ; Yaping XU ; Qidong ZHANG ; Weiguo WANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(5):141-149
Steroid-induced osteonecrosis of the femoral head (SONFH) is a severe musculoskeletal disorder often induced by the prolonged or excessive use of glucocorticoids. Characterized by ischemia of bone cells, necrosis, and trabecular fractures, SONFH is accompanied by pain, femoral head collapse, and joint dysfunction, which can lead to disability in severe cases. The pathogenesis of SONFH involves hormone-induced osteoblast apoptosis, bone microvascular endothelial cell (BMEC) apoptosis, oxidative stress, and inflammatory responses. The phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) signaling pathway plays a pivotal role in the development of the disease. Modulating the PI3K/Akt signaling pathway can promote Akt phosphorylation, thereby stimulating the osteogenic differentiation of bone marrow mesenchymal stem cells and osteoblasts, promoting angiogenesis in BMECs, and inhibiting osteoclastogenesis. The research on the treatment of SONFH with traditional Chinese medicine (TCM) has gained increasing attention. Recent studies have shown that TCM monomers and compounds have potential therapeutic effect on SONFH by intervening in the PI3K/Akt signaling pathway. These studies not only provide a scientific basis for the application of TCM in the treatment of SONFH but also offer new ideas for the development of new therapeutic strategies. This review summarized the progress in Chinese and international research on the PI3K/Akt signaling pathway in SONFH over the past five years. It involved the composition and transmission mechanisms of the signaling pathway, as well as its regulatory effects on osteoblasts, mesenchymal stem cells, osteoclasts, BMECs, and other cells. Additionally, the review explored the TCM understanding of SONFH and the application of TCM monomers and compounds in the intervention of the PI3K/Akt pathway. By systematically analyzing and organizing these research findings, this article aimed to provide references and point out directions for the clinical prevention and treatment of SONFH and promote further development of TCM in this field. With in-depth research on the PI3K/Akt pathway and the modern application of TCM, it is expected to bring safer and more effective treatment options for patients with SONFH.
4.HAN Mingxiang's Experience in Staged and Syndrome-Based Treatment of Chronic Obstructive Pulmonary Disease
Jian DING ; Hui TAO ; Gang CHENG ; Weizhen GUO ; Zegeng LI ; Ya MAO ;
Journal of Traditional Chinese Medicine 2025;66(8):780-785
This paper summarizes Professor HAN Mingxiang's clinical experience in treating chronic obstructive pulmonary disease (COPD). He believes that the key pathomechanism of COPD in the acute exacerbation stage is the invasion of external pathogens triggering latent illness, while lung qi deficiency is the primary mechanism in the stable stage. The core pathological factors throughout disease progression are deficiency, phlegm, and blood stasis. Treatment emphasizes a staged and syndrome-based approach. During the acute exacerbation stage, for wind-cold invading the lung syndrome, the self-formulated Sanzi Wenfei Decoction (三子温肺汤) is used to relieve the exterior, dispel cold, warm the lung, and resolve phlegm. For phlegm-dampness obstructing the lung syndrome, Huatan Jiangqi Fomulation (化痰降气方) is prescribed to warm the lung, transform phlegm, descend qi, and calm wheezing. For phlegm-heat obstructing the lung syndrome, Qingfei Huatan Fomulation (清肺化痰方) is applied to clear heat, resolve phlegm, moisten the lung, and stop coughing. For phlegm and blood stasis interlocking syndrome, Qibai Pingfei Fomulation (芪白平肺方) is used to tonify qi, resolve phlegm, and activate blood circulation to remove stasis. During the stable stage, for lung qi deficiency syndrome, Shenqi Wenfei Decoction (参芪温肺汤) is employed to warm the lung, tonify qi, resolve phlegm, and eliminate turbidity. For lung-spleen qi deficiency syndrome, Shenqi Buzhong Decoction (参芪补中汤) is utilized to strengthen the spleen, tonify qi, and reinforce metal (lung) from earth (spleen). For lung-kidney deficiency syndrome, Shenqi Tiaoshen Fomulation (参芪调肾方) is prescribed to tonify the lung, warm yang, and regulate kidney function to calm wheezing. These strategies provide insights into the traditional Chinese medicine treatment of COPD.
5.Effect of sodium-glucose cotransporter 2 inhibitor empagliflozin in alleviating uremic cardiomyopathy and related mechanism
Shi CHENG ; Yeqing XIE ; Wei LU ; Jiarui XU ; Yong YU ; Ruizhen CHEN ; Bo SHEN ; Xiaoqiang DING
Chinese Journal of Clinical Medicine 2025;32(2):248-258
Objective To investigate the effect of sodium-glucose cotransporter 2 inhibitor (empagliflozin, EMPA) on myocardial remodeling in a mouse uremic cardiomyopathy (UCM) model induced by 5/6 nephrectomy, through the phosphatidylinositol 3 kinase (PI3K)/protein kinase B (PKB/AKT)/p65 signaling pathway. Methods The animals were divided into three groups: Sham group (n=6), UCM group (n=8), and UCM+EMPA group (n=8). A UCM model was established in C57BL/6N mice using the 5/6 nephrectomy. Starting from 5 weeks post-surgery, EMPA or a placebo was administered. After 16 weeks, blood pressure, serum creatinine, blood urea nitrogen, 24-hour urine glucose and urine sodium were measured. Cardiac structure and function were assessed by echocardiography. Hematoxylin-eosin (HE) staining and Masson trichrome staining were used to observe pathological changes in the heart and kidneys. Wheat germ agglutinin (WGA) staining was used to evaluate myocardial hypertrophy. The real-time quantitative PCR (RT-qPCR) was used to detect the expression levels of myocardial hypertrophy- and fibrosis-related mRNAs. Western blotting was used to detect the expression levels of PI3K, AKT and p65 in myocardial tissues. Results After 16 weeks, UCM group exhibited significantly higher blood pressure, serum creatinine, blood urea nitrogen than sham group (P<0.01); UCM+EMPA group exhibited lower blood pressure, serum creatinine, blood urea nitrogen, and higher 24 h urine sodium and glucose than UCM group (P<0.05). Echocardiographic results showed ventricular remodeling in the UCM group, evidenced by left ventricular wall thickening, left ventricular enlargement, increased left ventricular mass, and decreased systolic function (P<0.05); ventricular remodeling was alleviated (P<0.05), though there was no significant improvement in systolic function in UCM+EMPA group. HE and Masson stainings revealed myocardial degeneration, necrosis, and interstitial fibrosis in UCM group (P<0.01); the myocardial pathology improved with reduced collagen deposition in UCM+EMPA group (P<0.01). WGA staining confirmed myocardial hypertrophy in UCM group (P<0.01), while myocardial hypertrophy was alleviated in UCM+EMPA group (P<0.01). RT-qPCR results showed myocardial hypertrophy- and fibrosis-related genes (NPPA, NPPB, MYH7, COL1A1, COL3A1, TGF-β1) were upregulated in UCM group (P<0.05), but downregulated in UCM+EMPA group. Western blotting showed PI3K, p-AKT/AKT ratio, and p-p65/p65 ratio were increased in UCM group, but decreased in UCM+EMPA group (P<0.05). Conclusion EMPA can improve myocardial hypertrophy and fibrosis in the UCM mouse model, and it may play the role through inhibiting the PI3K/AKT/p65 signaling pathway.
6.Effects of different exercise interventions on carboxylesterase 1 and inflammatory factors in skeletal muscle of type 2 diabetic rats
Shujuan HU ; Ping CHENG ; Xiao ZHANG ; Yiting DING ; Xuan LIU ; Rui PU ; Xianwang WANG
Chinese Journal of Tissue Engineering Research 2025;29(2):269-278
BACKGROUND:Carboxylesterase 1 and inflammatory factors play a crucial role in regulating lipid metabolism and glucose homeostasis.However,the effects of different exercise intensity interventions on carboxylesterase 1 and inflammatory factors in skeletal muscle of type 2 diabetic rats remain to be revealed. OBJECTIVE:To investigate the effects of different exercise intensity interventions on carboxylesterase 1 and inflammatory factors in skeletal muscle of type 2 diabetic rats. METHODS:Thirty-two 8-week-old male Sprague-Dawley rats were randomly divided into normal control group(n=12)and modeling group(n=20)after 1 week of adaptive feeding.Rat models of type 2 diabetes mellitus were prepared by high-fat diet and single injection of streptozotocin.After successful modeling,the rats were randomly divided into diabetic control group(n=6),moderate-intensity exercise group(n=6)and high-intensity intermittent exercise group(n=6).The latter two groups were subjected to treadmill training at corresponding intensities,once a day,50 minutes each,and 5 days per week.Exercise intervention in each group was carried out for 6 weeks.After the intervention,ELISA was used to detect blood glucose and blood lipids of rats.The morphological changes of skeletal muscle were observed by hematoxylin-eosin staining.The mRNA expression levels of carboxylesterase 1 and inflammatory cytokines were detected by real-time quantitative PCR.The protein expression levels of carboxylesterase 1 and inflammatory cytokines were detected by western blot and immunofluorescence. RESULTS AND CONCLUSION:Compared with the normal control group,fasting blood glucose,triglyceride,low-density lipoprotein cholesterol,insulin resistance index in the diabetic control group were significantly increased(P<0.01),insulin activity was decreased(P<0.05),and the mRNA and protein levels of carboxylesterase 1,never in mitosis gene A related kinase 7(NEK7)and interleukin 18 in skeletal muscle tissue were upregulated(P<0.05).Compared with the diabetic control group,fasting blood glucose,triglyceride,low-density lipoprotein cholesterol,and insulin resistance index in the moderate-intensity exercise group and high-intensity intermittent exercise group were down-regulated(P<0.05),and insulin activity was increased(P<0.05).Moreover,compared with the diabetic control group,the mRNA level of NEK7 and the protein levels of carboxylesterase 1,NEK7 and interleukin 18 in skeletal muscle were decreased in the moderate-intensity exercise group(P<0.05),while the mRNA levels of carboxylesterase 1,NEK7,NOD-like receptor heat protein domain associated protein 3 and interleukin 18 and the protein levels of carboxylesterase 1 and interleukin 18 in skeletal muscle were downregulated in the high-intensity intermittent exercise group(P<0.05).Hematoxylin-eosin staining showed that compared with the diabetic control group,the cavities of myofibers in the moderate-intensity exercise group became smaller,the number of internal cavities was reduced,and the cellular structure tended to be more intact;the myocytes of rats in the high-intensity intermittent exercise group were loosely arranged,with irregular tissue shape and increased cavities in myofibers.To conclude,both moderate-intensity exercise and high-intensity intermittent exercise can reduce blood glucose,lipid,insulin resistance and carboxylesterase 1 levels in type 2 diabetic rats.Moderate-intensity exercise can significantly reduce the expression level of NEK7 protein in skeletal muscle,while high-intensity intermittent exercise can significantly reduce the expression level of interleukin 18 protein in skeletal muscle.In addition,the level of carboxylesterase 1 is closely related to the levels of NEK7 and interleukin 18.
7.RhD-negative blood donors: genetic polymorphisms and testing strategies
Kecheng WANG ; Xiaoqin WANG ; Yingzhou DING ; Tingting ZHANG ; Ming LIU ; Cheng XU
Chinese Journal of Blood Transfusion 2025;38(7):934-940
Objective: To investigate the genetic basis of RhD-negative phenotype in the blood donor population of Nantong City. Methods: RHD genotyping was performed on 386 randomly selected RhD-negative donor samples (from a total of 676 RhD-negative donors identified between January 20, 2023, and June 28, 2024) using polymerase chain reaction (PCR), and the inconclusive results were confirmed by nucleotide sequencing. Results: Ten RHD allele types were identified: The complete deletion variant RHD
01N.01 was predominant (64.25%, 248/386); followed by RHD
01EL.01 (19.69%, 76/386). RHD
01N.03, RHD
01N.04, RHD
01N.16 and RHD
01EL.32 were frequently observed., RHD
01EL.02, RHD
01EL.08, RHD
01EL.37 and RHD
01N.25 were rare, and two exon deletion variants remained uncharacterized. The phenotypic distribution of RhD-negative blood donors was ccee (55.44%)>Ccee(31.09%)>ccEe(5.96%)>CCee(5.44%)>CcEe(1.81%)>CcEE(0.26%), and the antigen distribution trend was e(99.74%)>c(94.56%)>C(38.60%)>E(8.03%). A correlation was observed between RHD genotypes and RhCE phenotypes. Conclusion: The Nantong blood donor population exhibits unique RHD gene polymorphisms. Integrating RhCE serological phenotyping with RHD genotyping is essential for ensuring transfusion safety.
8.RhD-negative blood donors: genetic polymorphisms and testing strategies
Kecheng WANG ; Xiaoqin WANG ; Yingzhou DING ; Tingting ZHANG ; Ming LIU ; Cheng XU
Chinese Journal of Blood Transfusion 2025;38(7):934-940
Objective: To investigate the genetic basis of RhD-negative phenotype in the blood donor population of Nantong City. Methods: RHD genotyping was performed on 386 randomly selected RhD-negative donor samples (from a total of 676 RhD-negative donors identified between January 20, 2023, and June 28, 2024) using polymerase chain reaction (PCR), and the inconclusive results were confirmed by nucleotide sequencing. Results: Ten RHD allele types were identified: The complete deletion variant RHD
01N.01 was predominant (64.25%, 248/386); followed by RHD
01EL.01 (19.69%, 76/386). RHD
01N.03, RHD
01N.04, RHD
01N.16 and RHD
01EL.32 were frequently observed., RHD
01EL.02, RHD
01EL.08, RHD
01EL.37 and RHD
01N.25 were rare, and two exon deletion variants remained uncharacterized. The phenotypic distribution of RhD-negative blood donors was ccee (55.44%)>Ccee(31.09%)>ccEe(5.96%)>CCee(5.44%)>CcEe(1.81%)>CcEE(0.26%), and the antigen distribution trend was e(99.74%)>c(94.56%)>C(38.60%)>E(8.03%). A correlation was observed between RHD genotypes and RhCE phenotypes. Conclusion: The Nantong blood donor population exhibits unique RHD gene polymorphisms. Integrating RhCE serological phenotyping with RHD genotyping is essential for ensuring transfusion safety.
9.Mechanism of Chaipo Decoction in Alleviating Pyroptosis in Asthmatic Rats via Regulation of NLRP3/Caspase-1/GSDMD Pathway
Guoran PENG ; Beibei CHENG ; Rongzhen DING ; Aiguo DAI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(22):135-144
ObjectiveTo investigate the therapeutic effects of Chaipo decoction on bronchial asthma in rats and its regulatory effects on the nucleotide-binding oligomerization domain-like receptor pyrin domain-containing protein 3 (NLRP3)/cysteinyl aspartate-specific protease-1 (Caspase-1)/Gasdermin D (GSDMD) pathway, aiming to elucidate its mechanism in ameliorating pyroptosis. MethodsSixty male Sprague-Dawley (SD) rats were randomly divided into six groups (n=10 per group): normal control, asthma model, Chaipo decoction low-dose (5.0 g·kg-1), medium-dose (10.0 g·kg-1), high-dose (20.0 g·kg-1), and dexamethasone (1.0 mg·kg-1). The asthma model was established in all groups except the normal control group via ovalbumin (OVA) sensitization and challenge. Rats in the Chaipo decoction groups received intragastric administration of Chaipo decoction at the corresponding doses, while the dexamethasone group was treated with dexamethasone. The normal and model groups were administered equivalent volumes of saline. After 14 days of intervention, asthma symptom scores were assessed. Dynamic lung compliance (Cdyn), lung resistance (RL), and functional residual capacity (FRC) were measured using a small animal pulmonary function testing system. Lung tissue pathology was evaluated by hematoxylin-eosin (HE), Masson's trichrome, and periodic acid-Schiff (PAS) staining. Levels of interleukin (IL)-6, IL-1β, and IL-18 in bronchoalveolar lavage fluid (BALF) were determined by enzyme-linked immunosorbent assay (ELISA). Expression of NLRP3 and apoptosis-associated speck-like protein (ASC) in lung tissues was assessed by immunohistochemistry (IHC). Protein levels of NLRP3, Caspase-1, GSDMD, and other pyroptosis-related proteins were measured by Western blot. ResultsCompared with the normal group, the model group exhibited significantly increased asthma symptom scores, inflammatory scores, collagen deposition, PAS scores, RL, FRC, levels of IL-6, IL-1β, and IL-18 in BALF, and expression levels of NLRP3, ASC, and other pyroptosis-related proteins in lung tissue (P0.01), while Cdyn was significantly decreased (P0.01). Compared with the model group, all doses of Chaipo decoction markedly improved asthma symptoms, with significantly reduced symptom scores (P0.05, P0.01). Pulmonary function analysis showed that medium and high doses of Chaipo decoction significantly increased Cdyn (P0.05, P0.01) and decreased RL and FRC (P0.05, P0.01). Histopathological evaluation indicated that high-dose Chaipo decoction significantly reduced inflammatory scores, collagen deposition, and goblet cell hyperplasia in lung tissue (P0.05, P0.01). ELISA results showed that all doses of Chaipo decoction significantly decreased IL-6, IL-1β, and IL-18 levels in BALF (P0.05, P0.01). IHC and Western blot analyses demonstrated that medium and high doses of Chaipo decoction markedly downregulated NLRP3, ASC, and other pyroptosis-related proteins in lung tissue (P0.05, P0.01). ConclusionChaipo decoction effectively improves pulmonary function and pathological damage in asthmatic rats, potentially by inhibiting the NLRP3/Caspase-1/GSDMD pathway and reducing pyroptosis.
10.Comprehensive analysis of insulin products complex disulfide bonds structure by high resolution mass spectrum
Xin-yue HU ; Xiao-li DING ; Yue SUN ; Hui ZHANG ; Jing LI ; Cheng-gang LINAG
Acta Pharmaceutica Sinica 2024;59(1):188-197
The correct pairing of disulfide bonds maintains the correct folding mode and high-level structure formation of peptides and protein drugs, which is crucial for the quality control of products. In order to ensure that the disulfide bonds are correctly paired, disulfide bond analysis is an essential part of peptides and protein drug characterization. Mass spectrometry can be used to analyze disulfide bonds. However, insulin and its analogues have two pairs of disulfide bonds without restriction enzyme cutting site. Conventional collision-induced dissociation (CID) and high-energy induced cleavage (HCD) cannot accurately locate the complex disulfide bond. In our study, three methods were used to localize the complex disulfide, including enzyme digestion combined with key peptide fragment in source decay (ISD) fragmentation method, enzyme digestion combined with partial reduction alkylation method, intact protein source ISD and electron transfer dissociation (ETD) cleavage method, The applicability of insulin aspart, insulin lispro and insulin glargine were also investigated. This study provides a new way for the quality control of disulfide bonding mode of insulin and its analogues, and also provides a reference for the disulfide bond localization of peptides or proteins containing this complex disulfide bond.

Result Analysis
Print
Save
E-mail