1.Neuroplasticity Mechanisms of Exercise-induced Brain Protection
Li-Juan HOU ; Lan-Qun MAO ; Wei CHEN ; Ke LI ; Xu-Dong ZHAO ; Yin-Hao WANG ; Zi-Zheng YANG ; Tian-He WEI
Progress in Biochemistry and Biophysics 2025;52(6):1435-1452
		                        		
		                        			
		                        			Neuroscience is a significant frontier discipline within the natural sciences and has become an important interdisciplinary frontier scientific field. Brain is one of the most complex organs in the human body, and its structural and functional analysis is considered the “ultimate frontier” of human self-awareness and exploration of nature. Driven by the strategic layout of “China Brain Project”, Chinese scientists have conducted systematic research focusing on “understanding the brain, simulating the brain, and protecting the brain”. They have made breakthrough progress in areas such as the principles of brain cognition, mechanisms and interventions for brain diseases, brain-like computation, and applications of brain-machine intelligence technology, aiming to enhance brain health through biomedical technology and improve the quality of human life. Due to limited understanding and comprehension of neuroscience, there are still many important unresolved issues in the field of neuroscience, resulting in a lack of effective measures to prevent and protect brain health. Therefore, in addition to actively developing new generation drugs, exploring non pharmacological treatment strategies with better health benefits and higher safety is particularly important. Epidemiological data shows that, exercise is not only an indispensable part of daily life but also an important non-pharmacological approach for protecting brain health and preventing neurodegenerative diseases, forming an emerging research field known as motor neuroscience. Basic research in motor neuroscience primarily focuses on analyzing the dynamic coding mechanisms of neural circuits involved in motor control, breakthroughs in motor neuroscience research depend on the construction of dynamic monitoring systems across temporal and spatial scales. Therefore, high spatiotemporal resolution detection of movement processes and movement-induced changes in brain structure and neural activity signals is an important technical foundation for conducting motor neuroscience research and has developed a set of tools based on traditional neuroscience methods combined with novel motor behavior decoding technologies, providing an innovative technical platform for motor neuroscience research. The protective effect of exercise in neurodegenerative diseases provides broad application prospects for its clinical translation. Applied research in motor neuroscience centers on deciphering the regulatory networks of neuroprotective molecules mediated by exercise. From the perspectives of exercise promoting neurogenesis and regeneration, enhancing synaptic plasticity, modulating neuronal functional activity, and remodeling the molecular homeostasis of the neuronal microenvironment, it aims to improve cognitive function and reduce the incidence of Parkinson’s disease and Alzheimer’s disease. This has also advanced research into the molecular regulatory networks mediating exercise-induced neuroprotection and facilitated the clinical application and promotion of exercise rehabilitation strategies. Multidimensional analysis of exercise-regulated neural plasticity is the theoretical basis for elucidating the brain-protective mechanisms mediated by exercise and developing intervention strategies for neurological diseases. Thus,real-time analysis of different neural signals during active exercise is needed to study the health effects of exercise throughout the entire life cycle and enhance lifelong sports awareness. Therefore, this article will systematically summarize the innovative technological developments in motor neuroscience research, review the mechanisms of neural plasticity that exercise utilizes to protect the brain, and explore the role of exercise in the prevention and treatment of major neurodegenerative diseases. This aims to provide new ideas for future theoretical innovations and clinical applications in the field of exercise-induced brain protection. 
		                        		
		                        		
		                        		
		                        	
2.Insights on Peripheral Blood Biomarkers for Parkinson’s Disease
Yu-Meng LI ; Jing-Kai LIU ; Zi-Xuan CHEN ; Yu-Lin DENG
Progress in Biochemistry and Biophysics 2025;52(1):72-87
		                        		
		                        			
		                        			Parkinson’s disease (PD) is a common neurodegenerative disorder with profound impact on patients’ quality of life and long-term health, and early detection and intervention are particularly critical. In recent years, the search for precise and reliable biomarkers has become one of the key strategies to effectively address the clinical challenges of PD. In this paper, we systematically evaluated potential biomarkers, including proteins, metabolites, epigenetic markers, and exosomes, in the peripheral blood of PD patients. Protein markers are one of the main directions of biomarker research in PD. In particular, α‑synuclein and its phosphorylated form play a key role in the pathological process of PD. It has been shown that aggregation of α-synuclein may be associated with pathologic protein deposition in PD and may be a potential marker for early diagnosis of PD. In terms of metabolites, uric acid, as a metabolite, plays an important role in oxidative stress and neuroprotection in PD. It has been found that changes in uric acid levels may be associated with the onset and progression of PD, showing its potential as an early diagnostic marker. Epigenetic markers, such as DNA methylation modifications and miRNAs, have also attracted much attention in Parkinson’s disease research. Changes in these markers may affect the expression of PD-related genes and have an important impact on the onset and progression of the disease, providing new research perspectives for the early diagnosis of PD. In addition, exosomes, as a potential biomarker carrier for PD, are able to carry a variety of biomolecules involved in intercellular communication and pathological regulation. Studies have shown that exosomes may play an important role in the pathogenesis of PD, and their detection in blood may provide a new breakthrough for early diagnosis. It has been shown that exosomes may play an important role in the pathogenesis of PD, and their detection in blood may provide new breakthroughs in early diagnosis. In summary, through in-depth evaluation of biomarkers in the peripheral blood of PD patients, this paper demonstrates the important potential of these markers in the early diagnosis of PD and in the study of pathological mechanisms. Future studies will continue to explore the clinical application value of these biomarkers to promote the early detection of PD and individualized treatment strategies. 
		                        		
		                        		
		                        		
		                        	
3.Effects of electroacupuncture on the expression of metabolic enzymes and autophagy genes in gastrocnemius muscle tissues of exercising rats
Rongfa ZHENG ; Weibin MO ; Peng HUANG ; Junji CHEN ; Ting LIANG ; Fangyu ZI ; Guofeng LI
Chinese Journal of Tissue Engineering Research 2025;29(6):1127-1136
		                        		
		                        			
		                        			BACKGROUND:Acute exercise tends to cause skeletal muscle tissue damage and lipid metabolism disorders in vivo,but the mechanism by which acute exercise combined with electroacupuncture modulates metabolic and autophagic pathways in vivo is unclear. OBJECTIVE:To observe the changes in metabolic enzymes and autophagy levels in skeletal muscle of rats subjected to acute exercise by electroacupuncture at the acupoints of"Zusanli"and"Huantiao." METHODS:Fifty male Sprague-Dawley rats were randomly divided into three groups:quiet control group(n=10),model group(n=20),and reverse electroacupuncture group(n=20).The latter two groups were set up with two time points,i.e.immediate and 3 hours after exercise groups(n=10 per time point).The model group and the reverse electroacupuncture group underwent acute exercise training after adaptive treadmill training.The rats in the reverse electroacupuncture group underwent electroacupuncture treatment(parameters:electroacupuncture on both sides of the rats at the acupoints of"Zusanli"and"Huantiao,"continuous wave,frequency of 2 Hz,intensity of 2 mA,leaving the needle in the body for 30 minutes,once a day for 7 consecutive days)before treadmill training.Bilateral gastrocnemius muscle tissues were taken under anesthesia immediately after exercise and 3 hours after exercise,and hematoxylin-eosin staining was used to observe the histopathological changes of rat skeletal muscle.ELISA kit was used to detect the activities of hepatic lipase,fatty acid synthase,hormone-sensitive lipase,and carnitine palmitoyltransferase 1 in rat skeletal muscle tissues.Immunohistochemistry and western blot were used to detect the changes in the expression of autophagy genes. RESULTS AND CONCLUSION:After hematoxylin-eosin staining,the arrangement of gastrocnemius muscle fibers in the model group was disturbed,swollen and ruptured immediately after exercise and 3 hours after exercise.In the reverse electroacupuncture group,gastrocnemius muscle fibers were tightly arranged and the number of swollen and ruptured cells was greatly reduced immediately after exercise and 3 hours after exercise,and there was no significant difference when compared with the quiet control group.Compared with the quiet control group,the activities of hepatic lipase and fatty acid synthase were lower while the activities of lipoprotein lipase,hormone-sensitive lipase,and carnitine palmitoyltransferase 1 were higher in the model group and the reverse electroacupuncture group 3 hours after exercise(P<0.05 or P<0.01).Compared with the model group,the activities of lipoprotein lipase and carnitine palmitoyltransferase 1 were higher in the reverse electroacupuncture group immediately after exercise(P<0.05),while the activity of lipoprotein lipase was higher and the activity of hormone-sensitive lipase was lower in the reverse electroacupuncture group 3 hours after exercise(P<0.01).Immunohistochemical results showed that compared with the quiet control group,the expression of P62,autophagy-related gene 5 and autophagy-related gene 7 was higher in the model group immediately and 3 hours after exercise,as well as in the reverse electroacupuncture group immediately after exercise(P<0.05 or P<0.01);compared with the model group,the expression of P62 and autophagy-related gene 7 was lower in the reverse electroacupuncture group immediately and 3 hours after exercise(P<0.05).Western blot results showed that the protein expression of P62 and autophagy-related gene 7 in the reverse electroacupuncture group was lower than that in the model group immediately after exercise(P<0.05);the protein expression of Parkin in the model group was higher than that in the quiet control group immediately and 3 hours after exercise(P<0.05);and the protein expression of Parkin in the reverse electroacupuncture group was lower than that in the model group immediately and 3 hours after exercise(P<0.05).To conclude,acute exercise induces disorders,swelling and rupture of gastrocnemius muscle fibers in rats and electroacupuncture on both sides of the acupoints of"Zusanli"and"Huantiao"can improve the level of lipid metabolism and regulate autophagy cells in rat skeletal muscle,preventing the disorders of lipid metabolism and damage of gastrocnemius muscle tissues caused by acute exercise.The mechanism may be closely related to the regulation of autophagy-related factor P62,autophagy-related gene 5,autophagy-related gene 7,and Parkin protein expression to promote the occurrence of autophagy or regulate the autophagy pathway in rat skeletal muscle cells.
		                        		
		                        		
		                        		
		                        	
4.Research progress of nano drug delivery system based on metal-polyphenol network for the diagnosis and treatment of inflammatory diseases
Meng-jie ZHAO ; Xia-li ZHU ; Yi-jing LI ; Zi-ang WANG ; Yun-long ZHAO ; Gao-jian WEI ; Yu CHEN ; Sheng-nan HUANG
Acta Pharmaceutica Sinica 2025;60(2):323-336
		                        		
		                        			
		                        			 Inflammatory diseases (IDs) are a general term of diseases characterized by chronic inflammation as the primary pathogenetic mechanism, which seriously affect the quality of patient′s life and cause significant social and medical burden. Current drugs for IDs include nonsteroidal anti-inflammatory drugs, corticosteroids, immunomodulators, biologics, and antioxidants, but these drugs may cause gastrointestinal side effects, induce or worsen infections, and cause non-response or intolerance. Given the outstanding performance of metal polyphenol network (MPN) in the fields of drug delivery, biomedical imaging, and catalytic therapy, its application in the diagnosis and treatment of IDs has attracted much attention and significant progress has been made. In this paper, we first provide an overview of the types of IDs and their generating mechanisms, then sort out and summarize the different forms of MPN in recent years, and finally discuss in detail the characteristics of MPN and their latest research progress in the diagnosis and treatment of IDs. This research may provide useful references for scientific research and clinical practice in the related fields. 
		                        		
		                        		
		                        		
		                        	
		                				5.Exploring mechanism of Porana racemosa  Roxb. in treating rheumatoid arthritis based on integration of network pharmacology and molecular docking combined with experimental validation
		                			
		                			Chen-yu YE ; Ning LI ; Yin-zi CHEN ; Tong QU ; Jing HU ; Zhi-yong CHEN ; Hui REN
Acta Pharmaceutica Sinica 2025;60(1):117-129
		                        		
		                        			
		                        			 Through network pharmacology and molecular docking technology, combined with 
		                        		
		                        	
6.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
		                        		
		                        			 Objective:
		                        			To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer. 
		                        		
		                        			Materials and Methods:
		                        			A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs. 
		                        		
		                        			Results:
		                        			All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027). 
		                        		
		                        			Conclusion
		                        			The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer. 
		                        		
		                        		
		                        		
		                        	
7.Endovascular Treatment for Acute Posterior Circulation Tandem Lesions: Insights From the BASILAR and PERSIST Registries
Wei LI ; Mohamed F. DOHEIM ; Zhongming QIU ; Tan WANG ; Zhibin CHEN ; Wenjie ZI ; Qingwu YANG ; Haitao GUAN ; Hongyu QIAO ; Wenhua LIU ; Wei HU ; Xinfeng LIU ; Jinbo HUANG ; Zhongkui HAN ; Zhonglun CHEN ; Zhenqiang ZHAO ; Wen SUN ; Raul G. NOGUEIRA
Journal of Stroke 2025;27(1):75-84
		                        		
		                        			 Background:
		                        			and Purpose Limited evidence exists on the effectiveness of endovascular treatment (EVT) for acute posterior circulation tandem lesion (PCTL). This study aimed to explore the role of extracranial vertebral artery (VA) stenting in patients with PCTL stroke undergoing EVT. 
		                        		
		                        			Methods:
		                        			Individual patient data were pooled from the BASILAR (EVT for Acute Basilar Artery Occlusion Study) and PERSIST (Posterior Circulation Ischemic Stroke) registries. Patients with PCTLs who underwent EVT were included in the present cohort and divided into the stenting and nonstenting groups based on the placement of extracranial VA stents. The primary efficacy outcome was the modified Rankin Scale (mRS) scores at 90 days and 1 year. Safety outcomes included 24-hour symptomatic intracranial hemorrhage (sICH) and all-cause mortality at 90 days and 1 year post-surgery. 
		                        		
		                        			Results:
		                        			A combined dataset of 1,320 patients with posterior circulation artery occlusion, including 263 (19.9%) with tandem lesions, of whom 217 (median age, 65 years; 82.9% male) met the inclusion criteria for the analysis. The stenting group had 84 (38.7%) patients, while the non-stenting group had 133 (61.3%). After adjustment for the potential confounders, extracranial VA stenting was associated with favorable shifts in mRS scores at both 90 days (adjusted common odds ratio [OR], 2.30; 95% confidence interval [CI], 1.23–4.28; P<0.01) and 1 year (adjusted OR [aOR], 2.04; 95% CI [1.05–3.97]; P=0.04), along with lower rate of mortality at both 90 days (aOR, 0.45; 95% CI [0.21–0.93]; P=0.01) and 1 year (aOR, 0.36; 95% CI [0.16–0.79]; P=0.01), with no significant difference in sICH incidence (aOR, 0.35; 95% CI [0.06–1.98]; P=0.24). 
		                        		
		                        			Conclusion
		                        			Extracranial VA stenting during EVT may improve functional outcomes and reduce mortality in patients with PCTL strokes. 
		                        		
		                        		
		                        		
		                        	
8.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
		                        		
		                        			 Objective:
		                        			To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer. 
		                        		
		                        			Materials and Methods:
		                        			A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs. 
		                        		
		                        			Results:
		                        			All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027). 
		                        		
		                        			Conclusion
		                        			The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer. 
		                        		
		                        		
		                        		
		                        	
9.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
		                        		
		                        			 Objective:
		                        			To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer. 
		                        		
		                        			Materials and Methods:
		                        			A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs. 
		                        		
		                        			Results:
		                        			All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027). 
		                        		
		                        			Conclusion
		                        			The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer. 
		                        		
		                        		
		                        		
		                        	
10.Endovascular Treatment for Acute Posterior Circulation Tandem Lesions: Insights From the BASILAR and PERSIST Registries
Wei LI ; Mohamed F. DOHEIM ; Zhongming QIU ; Tan WANG ; Zhibin CHEN ; Wenjie ZI ; Qingwu YANG ; Haitao GUAN ; Hongyu QIAO ; Wenhua LIU ; Wei HU ; Xinfeng LIU ; Jinbo HUANG ; Zhongkui HAN ; Zhonglun CHEN ; Zhenqiang ZHAO ; Wen SUN ; Raul G. NOGUEIRA
Journal of Stroke 2025;27(1):75-84
		                        		
		                        			 Background:
		                        			and Purpose Limited evidence exists on the effectiveness of endovascular treatment (EVT) for acute posterior circulation tandem lesion (PCTL). This study aimed to explore the role of extracranial vertebral artery (VA) stenting in patients with PCTL stroke undergoing EVT. 
		                        		
		                        			Methods:
		                        			Individual patient data were pooled from the BASILAR (EVT for Acute Basilar Artery Occlusion Study) and PERSIST (Posterior Circulation Ischemic Stroke) registries. Patients with PCTLs who underwent EVT were included in the present cohort and divided into the stenting and nonstenting groups based on the placement of extracranial VA stents. The primary efficacy outcome was the modified Rankin Scale (mRS) scores at 90 days and 1 year. Safety outcomes included 24-hour symptomatic intracranial hemorrhage (sICH) and all-cause mortality at 90 days and 1 year post-surgery. 
		                        		
		                        			Results:
		                        			A combined dataset of 1,320 patients with posterior circulation artery occlusion, including 263 (19.9%) with tandem lesions, of whom 217 (median age, 65 years; 82.9% male) met the inclusion criteria for the analysis. The stenting group had 84 (38.7%) patients, while the non-stenting group had 133 (61.3%). After adjustment for the potential confounders, extracranial VA stenting was associated with favorable shifts in mRS scores at both 90 days (adjusted common odds ratio [OR], 2.30; 95% confidence interval [CI], 1.23–4.28; P<0.01) and 1 year (adjusted OR [aOR], 2.04; 95% CI [1.05–3.97]; P=0.04), along with lower rate of mortality at both 90 days (aOR, 0.45; 95% CI [0.21–0.93]; P=0.01) and 1 year (aOR, 0.36; 95% CI [0.16–0.79]; P=0.01), with no significant difference in sICH incidence (aOR, 0.35; 95% CI [0.06–1.98]; P=0.24). 
		                        		
		                        			Conclusion
		                        			Extracranial VA stenting during EVT may improve functional outcomes and reduce mortality in patients with PCTL strokes. 
		                        		
		                        		
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail