1.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
2.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
3.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
4.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
5.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
6.Association between QRS voltages and amyloid burden in patients with cardiac amyloidosis.
Jing-Hui LI ; Changcheng LI ; Yucong ZHENG ; Kai YANG ; Yan HUANG ; Huixin ZHANG ; Xianmei LI ; Xiuyu CHEN ; Linlin DAI ; Tian LAN ; Yang SUN ; Minjie LU ; Shihua ZHAO
Chinese Medical Journal 2024;137(3):365-367
7.Expert consensus on cryoablation therapy of oral mucosal melanoma
Guoxin REN ; Moyi SUN ; Zhangui TANG ; Longjiang LI ; Jian MENG ; Zhijun SUN ; Shaoyan LIU ; Yue HE ; Wei SHANG ; Gang LI ; Jie ZHNAG ; Heming WU ; Yi LI ; Shaohui HUANG ; Shizhou ZHANG ; Zhongcheng GONG ; Jun WANG ; Anxun WANG ; Zhiyong LI ; Zhiquan HUNAG ; Tong SU ; Jichen LI ; Kai YANG ; Weizhong LI ; Weihong XIE ; Qing XI ; Ke ZHAO ; Yunze XUAN ; Li HUANG ; Chuanzheng SUN ; Bing HAN ; Yanping CHEN ; Wenge CHEN ; Yunteng WU ; Dongliang WEI ; Wei GUO
Journal of Practical Stomatology 2024;40(2):149-155
Cryoablation therapy with explicit anti-tumor mechanisms and histopathological manifestations has a long history.A large number of clinical practice has shown that cryoablation therapy is safe and effective,making it an ideal tumor treatment method in theory.Previously,its efficacy and clinical application were constrained by the limitations of refrigerants and refrigeration equipment.With the development of the new generation of cryoablation equipment represented by argon helium knives,significant progress has been made in refrigeration efficien-cy,ablation range,and precise temperature measurement,greatly promoting the progression of tumor cryoablation technology.This consensus systematically summarizes the mechanism of cryoablation technology,indications for oral mucosal melanoma(OMM)cryotherapy,clinical treatment process,adverse reactions and management,cryotherapy combination therapy,etc.,aiming to provide reference for carrying out the standardized cryoablation therapy of OMM.
8.Polycystin-2 Ion Channel Function and Pathogenesis in Autosomal Dominant Polycystic Kidney
Kai WANG ; Yuan HUANG ; Ce-Fan ZHOU ; Jing-Feng TANG ; Xing-Zhen CHEN
Progress in Biochemistry and Biophysics 2024;51(1):47-58
Polycystin-2 (also known as PC2, TRPP2, PKD2) is a major contributor to the underlying etiology of autosomal dominant polycystic kidney disease (ADPKD), which is the most prevalent monogenic kidney disease in the world. As a transient receptor potential (TRP) channel protein, PC2 exhibits cation-permeable, Ca2+-dependent channel properties, and plays a crucial role in maintaining normal Ca2+ signaling in systemic physiology, particularly in ADPKD chronic kidney disease. Structurally, PC2 protein consists of six transmembrane structural domains (S1-S6), a polycystin-specific “tetragonal opening for polycystins” (TOP) domain located between the S1 and S2 transmembrane structures, and cytoplasmic N- and C-termini. Although the cytoplasmic N-terminus and C-terminus of PC2 may not be significant in the gating of PC2 channels, there is still much protein structural information that needs to be thoroughly investigated, including the regulation of channel function and the assembly of homotetrameric ion channels. This is further supported by the presence of human disease-associated mutation sites on the PC2 structure. Moreover, PC2 synthesized in the endoplasmic reticulum is enriched in specific subcellular localization via membrane transport and can assemble itself into homotetrameric ion channels, as well as form heterotrimeric receptor-ion channel complexes with other proteins. These complexes are involved in a wide range of physiological functions, including the regulation of mechanosensation, cell polarity, cell proliferation, and apoptosis. In particular, PC2 assembles with chaperone proteins to form polycystic protein complexes that affect Ca2+ transport in cell membranes, cilia, endoplasmic reticulum, and mitochondria, and are involved in activating cell fate-related signaling pathways, particularly cell differentiation, proliferation, survival, and apoptosis, and more recently, autophagy. This leads to a shift of cystic cells from a normal uptake, quiescent state to a pathologically secreted, proliferative state. In conclusion, the complex structural and functional roles of PC2 highlight its critical importance in the pathogenesis of ADPKD, making it a promising target for therapeutic intervention.
9.Application of quality control indicator system in blood banks of Shandong
Qun LIU ; Yuqing WU ; Xuemei LI ; Zhongsi YANG ; Zhe SONG ; Zhiquan RONG ; Shuhong ZHAO ; Lin ZHU ; Xiaojuan FAN ; Shuli SUN ; Wei ZHANG ; Jinyu HAN ; Xuejing LI ; Bo ZHOU ; Chenxi YANG ; Haiyan HUANG ; Guangcai LIU ; Kai CHEN ; Xianwu AN ; Hui ZHANG ; Junxia REN ; Hui YE ; Mingming QIAO ; Hua SHEN ; Dunzhu GONGJUE ; Yunlong ZHUANG
Chinese Journal of Blood Transfusion 2024;37(3):267-274
【Objective】 To establish an effective quality monitoring indicator system for blood quality control in blood banks, in order to analyze the quality control indicators for blood collection and supply, and evaluate blood quality control process, thus promoting continuous improvement and standardizing management of blood quality control in blood banks. 【Methods】 A quality monitoring indicator system covering the whole process of blood collection and supply, including blood donation services, component preparation, blood testing, blood supply and quality control was established. The Questionnaire of Quality Monitoring Indicators for Blood Collection and Supply Process was distributed to 17 blood banks in Shandong, which clarified the definition and calculation formula of indicators. The quality monitoring indicator data from January to December 2022 in each blood bank were collected, and 20 quality control indicators data were analyzed by SPSS25.0 software. 【Results】 The average pass rate of key equipment monitoring, environment monitoring, key material monitoring, and blood testing item monitoring of 17 blood banks were 99.47%, 99.51%, 99.95% and 98.99%, respectively. Significant difference was noticed in the pass rate of environment monitoring among blood banks of varied scales(P<0.05), and the Pearson correlation coefficient (r) between the total number of blood quality testing items and the total amount of blood component preparation was 0.645 (P<0.05). The average discarding rates of blood testing or non-blood testing were 1.14% and 3.36% respectively, showing significant difference among blood banks of varied scales (P<0.05). The average discarding rate of lipemic blood was 3.07%, which had a positive correlation with the discarding rate of non testing (r=0.981 3, P<0.05). There was a statistically significant difference in the discarding rate of lipemic blood between blood banks with lipemic blood control measures and those without (P<0.05). The average discarding rate of abnormal color, non-standard volume, blood bag damage, hemolysis, blood protein precipitation and blood clotting were 0.20%, 0.14%, 0.06%, 0.06%, 0.02% and 0.02% respectively, showing statistically significant differences among large, medium and small blood banks(P<0.05).The average discarding rates of expired blood, other factors, confidential unit exclusion and unqualified samples were 0.02%, 0.05%, 0.003% and 0.004%, respectively. The discarding rate of blood with air bubbles was 0.015%, while that of blood with foreign body and unqualified label were 0. 【Conclusion】 The quality control indicator system of blood banks in Shandong can monitor weak points in process management, with good applicability, feasibility, and effectiveness. It is conducive to evaluate different blood banks, continuously improve the quality control level of blood collection and supply, promote the homogenization and standardization of blood quality management, and lay the foundation for comprehensive evaluation of blood banks in Shandong.
10.Bioequivalence of lamotrigine tablets in Chinese healthy subjects
Jin-Sheng JIANG ; Hong-Ying CHEN ; Jun CHEN ; Yao CHEN ; Kai-Yi CHEN ; Xue-Hua ZHANG ; Jie HU ; Xin LIU ; Xin-Yi HUANG ; Dong-Sheng OUYANG
The Chinese Journal of Clinical Pharmacology 2024;40(6):894-898
Objective To study the pharmacokinetic characteristics of lamotrigine tablets in Chinese healthy subjects under fasting and fed conditions,and to evaluate the bioequivalence and safety profiles between the domestic test preparation and the original reference preparation.Methods Twenty-four Chinese healthy male and female subjects were enrolled under fasting and fed conditions,18 male and 6 female subjects under fasting conditions,17 male and 7 female subjects under fed conditions.A random,open,single-dose,two preparations,two sequences and double-crossover design was used.Plasma samples were collected over a 72-hour period after give the test or reference preparations 50 mg under fasting and fed conditions.The concentration of lamotrigine in plasma was detected by liquid chromatography-tandem mass spectrometry,and the main pharmacokinetic parameters were calculated to evaluate the bioequivalence by WinNonLin 8.1 program.Results The main pharmacokinetic parameters of single-dose the tested and reference preparations were as follows:The fasting condition Cmax were(910.93±248.02)and(855.87±214.36)ng·mL-1;tmax were 0.50(0.25,4.00)and 1.00(0.25,3.50)h;t1/2 were(36.1±9.2)and(36.0±8.2)h;AUC0_72h were(27 402.40±4 752.00)and(26 933.90±4 085.80)h·ng·mL-1.The fed condition Cmax were(701.62±120.67)and(718.95±94.81)ng·mL-1;tmax were 4.00(1.00,5.00)and 4.00(0.50,5.00)h;t1/2 were(44.2±12.4)and(44.0±12.0)h;AUC0-72h were(30 253.20±7 018.00)and(30 324.60±6 147.70)h·ng·mL-1.The 90%confidence intervals of the geometric mean ratios of Cmax and AUC0-72 hfor the test preparation and reference preparation were all between 80.00%and 125.00%under fasting and fed conditions.Conclusion Two kinds of lamotrigine tablets are bioequivalent,and have similar safety in Chinese healthy male and female subjects under fasting and fed conditions.

Result Analysis
Print
Save
E-mail