1.Correlation between dietary protein intake and type 2 diabetes in adult residents of Chongqing
Jingrong CHEN ; Shuquan LUO ; Yingxu LAI ; Ping FENG ; Dong WANG
Journal of Public Health and Preventive Medicine 2025;36(1):79-82
Objective To investigate the impact of dietary protein intake on the prevalence of type 2 diabetes in adult residents, and to provide a reference for formulating diabetes prevention and control measures. Methods The research was based on cross-sectional survey data from the Nutrition and Health Follow-up Study of Chinese Residents in Chongqing (2021). Energy and nutrient intake was calculated in combination with the Chinese food composition table. Multivariate logistic regression was used to analyze the association between dietary protein and diabetes, and then restricted cubic spline regression (RCS) was used to analyze the dose-response relationship between dietary protein intake and the development of diabetes. Results Among the 1 415 adult residents, dietary intake of total protein, animal protein, and plant protein was 69.69g/d, 26.26g/d, and 43.43g/d, respectively. The ratio of protein to energy supply was 14.31%, and the prevalence of diabetes was 18.02%. Comparing with the residents in the first percentile of total dietary protein intake, the multivariable-adjusted odds ratios of those in the second and third percentile were 1.754 and 2.453 respectively. Comparing the residents in the third percentile with those in the first percentile, the multivariable-adjusted odds ratios of diabetes were 1.592 for protein energy supply ratio, and 1.558 for animal protein intake. Conclusion High protein intake, high protein energy supply ratio and high animal protein intake may increase the risk of diabetes, and different types of protein may have different effects on diabetes.
2.Exercise Ameliorates Chronic Restraint Stress-induced Anxiety via PVN CRH Neurons
Jing CHEN ; Cong-Cong CHEN ; Kai-Na ZHANG ; Yu-Lin LAI ; Yang ZOU
Progress in Biochemistry and Biophysics 2025;52(2):501-512
ObjectiveTo investigate the role of paraventricular nucleus (PVN) corticotropin releasing hormone (CRH) neurons in chronic restraint stress (CRS)-induced anxiety-like behavior. And whether exercise relieves chronic restraint stress-induced anxiety through PVN CRH neurons. MethodsTwenty 8-week-old male C57BL/6J mice were randomly divided into control (Ctrl) group and chronic restraint stress (CRS) group. The open field test (OFT) and elevated plus maze (EPM) were used to evaluate anxiety-like behavior of the mice. Food intake was recorded after CRS. Immunofluorescence staining was used to label the expression of c-Fos expression in PVN and calculate the co-expression of c-Fos and CRH neurons. We used chemogenetic activation of PVN CRH neurons to observed the anxiety-like behavior. 8-week treadmill training (10-16 m/min, 60 min/d, 6 d/week) were used to explore the role of exercise in ameliorating CRS-induced anxiety behavior and how PVN CRH neurons involved in it. ResultsCompared with Ctrl group, CRS group exhibited significant anxiety-like behavior. In OFT, the mice in CRS groups spent less time in center area (P<0.001). In EPM, the time in open arm in CRS group were significantly decreased (P<0.001). Besides, food intake was also suppressed in CRS group compared with Ctrl group (P<0.05). Compared with Ctrl group, CRS significantly increase c-Fos expression in PVN and most of CRH neurons co-express c-Fos (P<0.001). Chemogenetic activation of PVN CRH neurons induced anxiety-like behavior (P<0.05) and inhibited feeding behavior (P<0.01). Exercise relieves chronic restraint stress-induced anxiety (P<0.001) and relieved the anorexia caused by chronic restraint stress (P<0.05). Aerobic exercise inhibited the CRS labeled c-Fos in PVN CRH neurons (P<0.001). Furthermore, ablation of PVN CRH neurons attenuated CRS induced anxiety-like behavior. ConclusionCRS activated PVN CRH neurons, induced anxiety-like behavior and reduced food intake. 8-week exercise attenuated CRS-induced anxiety-like behavior through inhibiting PVN CRH neuron. Ablation of CRH PVN neurons ameliorated CRS-induced anxiety-like behavior. These finding reveals a potential neural mechanism of exercise-relieving CRS-induced anxiety-like behavior. This provides a new idea and theoretical basis for the treatment of anxiety and related mental disorders.
3.Erk Signaling Pathway in Striatal D2-MSNs: an Essential Pathway for Exercise-induced Improvement in Parkinson’s Disease
Bo GAO ; Yi-Ning LAI ; Yi-Tong GE ; Wei CHEN
Progress in Biochemistry and Biophysics 2025;52(1):61-71
Parkinson’s disease (PD) is a neurodegenerative disorder characterized by the progressive loss of dopamine (DA) neurons in the substantia nigra pars compacta (SNpc), primarily manifesting as motor dysfunctions such as resting tremor, muscle rigidity, and bradykinesia. According to the classical model of basal ganglia motor control, approximately half of the medium spiny neurons (MSNs) in the striatum are D1-MSNs, which constitute the direct pathway. These neurons express D1-dopamine receptor (D1R) and substance P, and they mainly participate in the selection, initiation, and execution of movements. The other half are D2-MSNs, which constitute the indirect pathway. These neurons express D2-dopamine receptor (D2R) and adenosine 2A receptors and are involved in inhibiting unnecessary movements or terminating ongoing movements, thereby adjusting movement sequences to perform more precise motor behaviors. The direct pathway in the striatum modulates the activity of motor cortex neurons by exciting D1-MSNs through neurotransmitters such as glutamate (Glu), allowing the motor cortex to send signals more freely to the motor system, thus facilitating the generation and execution of specific motor behaviors. Studies using D1-Cre and D2-Cre mice with neurons labeled for D1R and D2R have shown that both types of neurons are involved in the execution of movements, with D1-MSNs participating in movement initiation and D2-MSNs in inhibiting actions unrelated to the target movement. These findings suggest that the structural and functional plasticity of D1-MSNs and D2-MSNs in the basal ganglia circuitry enables motor learning and behavioral regulation. Additionally, when SNpc DA neurons begin to degenerate, D1-MSNs are initially affected but do not immediately cause motor impairments. In contrast, when D2-MSNs undergo pathological changes, they are first activated by upstream projecting neurons, leading to the inhibition of most motor behaviors and resulting in motor dysfunction. Therefore, it is hypothesized that motor impairments such as bradykinesia and initiation difficulties are more closely related to the functional activity of D2-MSNs. The extracellular signal-regulated kinase (Erk)/mitogen-activated protein kinase (MAPK) signaling pathway has been identified as a critical modulator in the pathophysiology of PD. Recent findings indicate that Erk/MAPK signaling pathway can mediate DA and Glu signaling in the central nervous system, maintaining normal functional activity of striatal MSNs and influencing the transmission of motor control signals. Within this complex regulatory network, the Erk/MAPK signaling pathway plays a key role in transmitting motor information to downstream neurons, regulating normal movements, avoiding unnecessary movements, and finely tuning motor behaviors. Our laboratory’s previous research found that 4 weeks of aerobic exercise intervention improved motor dysfunction in PD mice by inhibiting the Erk1/2 signaling upstream of striatal MSNs, primarily involving the Erk1/2 signaling in D2-MSNs rather than D1-MSNs. This review summarizes the neurobiological mechanisms of Erk/MAPK signaling pathway in D2-MSNs for the prevention and treatment of motor dysfunction in PD. By exploring the role of this signaling pathway in regulating motor abnormalities and preventing motor dysfunction in the central nervous system of PD, this review provides new theoretical perspectives for related mechanistic research and therapeutic strategies.
4.Meta-analysis and Grade Evidence Evaluation of Qi-reinforcing and Blood-activating/ Stasis-expelling Chinese Patent Medicines in Treatment of Coronary Microvascular Disease
Jiaping CHEN ; Juju SHANG ; Hongxu LIU ; Xiang LI ; Xiaolei LAI ; Huiwen ZHOU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(5):157-166
ObjectiveTo systematically evaluate the efficacy and safety of Qi-reinforcing and blood-activating/stasis-expelling Chinese patent medicines in the treatment of coronary microvascular disease (CMD). MethodsPubMed, Cochrane Library, CNKI, Wanfang Data, and VIP were searched for the randomized controlled trials (RCTs) on the treatment of CMD with Chinese patent medicines for reinforcing Qi and activating blood/expelling stasis with the time interval from inception to December 31, 2023. The primary outcome indicators included the index of microcirculatory resistance (IMR), coronary flow reserve (CFR), and corrected TIMI flow frame count (cTFC). The secondary outcome indicators included symptomatic efficacy, left ventricular ejection fraction (LVEF), hypersensitive C-reactive protein (hs-CRP), nitric oxide (NO), and adverse events. Cochrane risk-of-bias assessment tool 2.0 (RoB 2.0) and Stata 17.0 were used for literature quality evaluation and meta-analysis of the included RCTs. The Grading of Recommendations, Assessment, Development and Evaluation (GRADE) was used to evaluate the quality of evidence. ResultsA total of 36 RCTs were included in this study, involving 3 029 patients. Compared with conventional Western medicine alone, the combined use of Chinese patent medicines for reinforcing Qi and activating blood/expelling stasis and Western medicine reduced the IMR [mean difference (MD)=-5.93, 95% confidence interval (95%CI) [-8.73,-3.14], n=382, P<0.01], cTFC (MD=-9.35, 95%CI [-13.94,-4.76], n=618, P<0.01), and hs-CRP [standard mean difference (SMD)=-1.50, 95%CI [-1.90,-1.11], n=1 483, P<0.01], improved the CFR (SMD=1.14, 95%CI [0.08,2.19], n=304, P=0.03), symptomatic efficacy [relative risk (RR)=1.36, 95%CI [1.21,1.53], n=756, P<0.01], LVEF (MD=4.39, 95%CI [2.31,6.47], n=533, P<0.01), and NO (SMD=3.16, 95%CI [2.07,4.25], n=946, P<0.01) of CMD patients. In terms of safety, the combined therapy reduced the occurrence of adverse events in CMD patients (RR=0.49, 95%CI [0.29,0.82], n=591, P=0.01). GRADE showed moderate quality evidence for adverse events, low quality evidence for cTFC, symptomatic efficacy, LVEF, and NO, and very low quality evidence for IMR, CFR, and hs-CRP. ConclusionBased on microcirculatory function indicators, the combined use of Qi-reinforcing and blood-activating/stasis-expelling Chinese patent medicines and Western medicine may further improve the coronary microvascular function in CMD patients with good safety. The above conclusions remain to be verified with high-quality clinical trials.
5.An animal model of severe acute respiratory distress syndrome for translational research
Kuo‑An CHU ; Chia‑Yu LAI ; Yu‑Hui CHEN ; Fu‑Hsien KUO ; I.‑Yuan CHEN ; You‑Cheng JIANG ; Ya‑Ling LIU ; Tsui‑Ling KO ; Yu‑Show FU
Laboratory Animal Research 2025;41(1):81-92
Background:
Despite the fact that an increasing number of studies have focused on developing therapies for acute lung injury, managing acute respiratory distress syndrome (ARDS) remains a challenge in intensive care medicine.Whether the pathology of animal models with acute lung injury in prior studies differed from clinical symptoms of ARDS, resulting in questionable management for human ARDS. To evaluate precisely the therapeutic effect of trans‑ planted stem cells or medications on acute lung injury, we developed an animal model of severe ARDS with lower lung function, capable of keeping the experimental animals survive with consistent reproducibility. Establishing this animal model could help develop the treatment of ARDS with higher efficiency.
Results:
In this approach, we intratracheally delivered bleomycin (BLM, 5 mg/rat) into rats’ left trachea via a needle connected with polyethylene tube, and simultaneously rotated the rats to the left side by 60 degrees. Within sevendays after the injury, we found that arterial blood oxygen saturation (SpO2 ) significantly decreased to 83.7%, partial pressure of arterial oxygen (PaO2 ) markedly reduced to 65.3 mmHg, partial pressure of arterial carbon dioxide (PaCO2 )amplified to 49.2 mmHg, and the respiratory rate increased over time. Morphologically, the surface of the left lung appeared uneven on Day 1, the alveoli of the left lung disappeared on Day 2, and the left lung shrank on Day 7. A his‑ tological examination revealed that considerable cell infiltration began on Day 1 and lasted until Day 7, with a larger area of cell infiltration. Serum levels of IL-5, IL-6, IFN-γ, MCP-1, MIP-2, G-CSF, and TNF-α substantially rose on Day 7.
Conclusions
This modified approach for BLM-induced lung injury provided a severe, stable, and one-sided (left-lobe) ARDS animal model with consistent reproducibility. The physiological symptoms observed in this severe ARDS animal model are entirely consistent with the characteristics of clinical ARDS. The establishment of this ARDS animal model could help develop treatment for ARDS.
6.Isolation,culture and differentiation of human urine-derived stem cells into smooth muscle cells
Jiahui CHEN ; Xiaoqi DAI ; Yangang XU ; Yuanchao LI ; Mei HUANG ; Yifei ZHAN ; Yuxuan DU ; Liuqiang LI ; Yaochuan GUO ; Jun BIAN ; Dehui LAI
Chinese Journal of Tissue Engineering Research 2025;29(19):4076-4082
BACKGROUND:Traditional methods of urinary tract reconstruction are limited by donor scarcity,high complication rates,and suboptimal functional recovery.Tissue engineering strategies offer new directions in this field.Since the urinary tract is mainly composed of muscle tissue,the key is to find suitable seed cells and efficiently induce them to differentiate into smooth muscle cells.Comparative studies on the efficacy of different smooth muscle cell induction regimens are still lacking. OBJECTIVE:To isolate,culture,and identify human urine-derived stem cells,and to compare the effects of two different induction protocols. METHODS:Human urine-derived stem cells were isolated from urine samples of 11 healthy adult volunteers by multiple centrifugations.Surface markers were identified by flow cytometry.The multi-directional differentiation potential of human urine-derived stem cells was verified through osteogenic and adipogenic differentiation.Differentiation was induced by transforming growth factor-β1 or transforming growth factor-β1 combined with platelet derived growth factor for 14 days.Immunofluorescence staining and western blot assay were employed to compare the expression differences of smooth muscle-specific proteins(α-SMA and SM22). RESULTS AND CONCLUSION:(1)Urine-derived stem cells were successfully isolated from the eight urine samples of healthy people.These cells exhibit a"rice grain"-like morphology and possess a robust proliferative capacity.(2)Urine-derived stem cells exhibited high expression of mesenchymal stem cell surface markers(CD73,CD90,and CD44)and extremely low expression of hematopoietic stem cell surface markers(CD34 and CD45).These cells did not express CD19,CD105,and HLA-DR.(3)After osteogenic and adipogenic differentiation,the formation of calcium nodules and lipid droplets was observed,with positive staining results from Alizarin Red S and Oil Red O staining.(4)After 14 days of smooth muscle induction culture,immunofluorescence staining revealed that the smooth muscle differentiation rate of urine-derived stem cells treated with a combination of transforming growth factor-β1 and platelet derived growth factor was significantly higher compared to those treated with transforming growth factor-β1 alone(P<0.005).(5)After 14 days of smooth muscle induction culture,western blot assay further demonstrated that the expression levels of α-SMA and SM22 in the transforming growth factor-β1/platelet derived growth factor group were significantly elevated compared to those in the transforming growth factor-β1 only group(P<0.005).These findings confirm that urine-derived stem cells can be non-invasively isolated using multiple rounds of centrifugation.Compared with transforming growth factor-β1 alone,the combination of transforming growth factor-β1 and platelet derived growth factor can improve the efficiency of inducing urine-derived stem cells to differentiate into smooth muscle cells.
7.Prognostic evaluation of liver transplantation for acute-on-chronic liver failure
Man LAI ; Manman XU ; Xin WANG ; Guangming LI ; Yu CHEN
Organ Transplantation 2025;16(3):482-488
Acute-on-chronic liver failure (ACLF) is an acute deterioration of liver function occurring on the basis of chronic liver disease, accompanied by failure of the liver and extrahepatic organs, and is associated with a high short-term mortality rate. Liver transplantation is the only curative treatment for patients with ACLF. However, the shortage of donor livers and limitations of the organ allocation system mean that only a minority of patients can receive transplants. The current organ allocation system based on the model for end-stage liver disease (MELD) score may underestimate the urgency of liver transplantation for ACLF patients. Therefore, it is urgent to develop better assessment tools to determine which ACLF patients are most likely to benefit from liver transplantation. This article reviews the current mainstream definitions of ACLF, the selection of candidates for liver transplantation in ACLF, and the prognostic scoring systems for liver transplantation in ACLF, both domestically and internationally, in order to provide a reference for the prognostic assessment of liver transplantation in ACLF patients.
8.An animal model of severe acute respiratory distress syndrome for translational research
Kuo‑An CHU ; Chia‑Yu LAI ; Yu‑Hui CHEN ; Fu‑Hsien KUO ; I.‑Yuan CHEN ; You‑Cheng JIANG ; Ya‑Ling LIU ; Tsui‑Ling KO ; Yu‑Show FU
Laboratory Animal Research 2025;41(1):81-92
Background:
Despite the fact that an increasing number of studies have focused on developing therapies for acute lung injury, managing acute respiratory distress syndrome (ARDS) remains a challenge in intensive care medicine.Whether the pathology of animal models with acute lung injury in prior studies differed from clinical symptoms of ARDS, resulting in questionable management for human ARDS. To evaluate precisely the therapeutic effect of trans‑ planted stem cells or medications on acute lung injury, we developed an animal model of severe ARDS with lower lung function, capable of keeping the experimental animals survive with consistent reproducibility. Establishing this animal model could help develop the treatment of ARDS with higher efficiency.
Results:
In this approach, we intratracheally delivered bleomycin (BLM, 5 mg/rat) into rats’ left trachea via a needle connected with polyethylene tube, and simultaneously rotated the rats to the left side by 60 degrees. Within sevendays after the injury, we found that arterial blood oxygen saturation (SpO2 ) significantly decreased to 83.7%, partial pressure of arterial oxygen (PaO2 ) markedly reduced to 65.3 mmHg, partial pressure of arterial carbon dioxide (PaCO2 )amplified to 49.2 mmHg, and the respiratory rate increased over time. Morphologically, the surface of the left lung appeared uneven on Day 1, the alveoli of the left lung disappeared on Day 2, and the left lung shrank on Day 7. A his‑ tological examination revealed that considerable cell infiltration began on Day 1 and lasted until Day 7, with a larger area of cell infiltration. Serum levels of IL-5, IL-6, IFN-γ, MCP-1, MIP-2, G-CSF, and TNF-α substantially rose on Day 7.
Conclusions
This modified approach for BLM-induced lung injury provided a severe, stable, and one-sided (left-lobe) ARDS animal model with consistent reproducibility. The physiological symptoms observed in this severe ARDS animal model are entirely consistent with the characteristics of clinical ARDS. The establishment of this ARDS animal model could help develop treatment for ARDS.
9.Role of 5-aminosalicylic acid in ulcerative colitis management in 8 Asian territories: a physician survey
Julajak LIMSRIVILAI ; Allen Yu-hung LAI ; Silvia T. H. LI ; Murdani ABDULLAH ; Raja Affendi Raja ALI ; Satimai ANIWAN ; Hoang Huu BUI ; Jen-Wei CHOU ; Ida Normiha HILMI ; Wee Chian LIM ; Jose SOLLANO ; Michelle Mui Hian TEO ; Shu-Chen WEI ; Wai Keung LEUNG
Intestinal Research 2025;23(2):117-128
Clinical guidelines typically endorse conventional therapies such as 5-aminosalicylic acid (5-ASA) as the mainstay of ulcerative colitis management. However, the degree of adoption and application of guideline recommendations by physicians within Asia remains unclear. This study aims to understand the prescribing patterns of 5-ASA and implementation of current guideline recommendations across Asian clinical practice. A physician survey was conducted among inflammatory bowel disease specialists in 8 Asian territories to understand practices and preferences in ulcerative colitis management, focusing on the use of 5-ASA and concordance with guideline recommendations. Survey findings were validated by country experts in diverse healthcare settings. Subgroup analyses stratified data by income levels and treatment reimbursement status. Ninety-eight valid responses were received from inflammatory bowel disease specialists or gastroenterologists among 8 economic entities. Significant differences were found in clinical practices and treatment preferences for ulcerative colitis management among different income-level and government-subsidy groups. Survey results are summarized in 8 findings that illustrate trends in 5-ASA use and guideline implementation across Asian territories. This study emphasizes socioeconomic factors that impact the adoption of guideline recommendations in real-world practice. Our findings indicate an eclectic approach to guideline implementation across Asia, based on resource availability and feasibility of treatment goals.
10.Optimizing 5-aminosalicylate for moderate ulcerative colitis: expert recommendations from the Asia-Pacific, Middle East, and Africa Inflammatory Bowel Disease Coalition
Filiz AKYÜZ ; Yoon Kyo AN ; Jakob BEGUN ; Satimai ANIWAN ; Huu Hoang BUI ; Webber CHAN ; Chang Hwan CHOI ; Nazeer CHOPDAT ; Susan J CONNOR ; Devendra DESAI ; Emma FLANAGAN ; Taku KOBAYASHI ; Allen Yu-Hung LAI ; Rupert W LEONG ; Alex Hwong-Ruey LEOW ; Wai Keung LEUNG ; Julajak LIMSRIVILAI ; Virly Nanda MUZELLINA ; Kiran PEDDI ; Zhihua RAN ; Shu Chen WEI ; Jose SOLLANO ; Michelle Mui Hian TEO ; Kaichun WU ; Byong Duk YE ; Choon Jin OOI
Intestinal Research 2025;23(1):37-55
The lack of clear definition and classification for “moderate ulcerative colitis (UC)” creates ambiguity regarding the suitability of step-up versus top-down treatment approaches. In this paper, experts address crucial gaps in assessing and managing moderate UC. The Asia-Pacific, Middle East, and Africa Inflammatory Bowel Disease Coalition comprised 24 experts who convened to share, discuss and vote electronically on management recommendations for moderate UC. Experts emphasized that the goal of treating UC is to attain clinical, biomarker, and endoscopic remission using cost-effective strategies such as 5-aminosalicylates (5-ASAs), well-tolerated therapy that can be optimized to improve outcomes. Experts agreed that 5-ASA therapy could be optimized by maximizing dosage (4 g/day for induction of remission), combining oral and topical administration, extending treatment duration beyond 8 weeks, and enhancing patient adherence through personalized counselling and reduced pill burden. Treatment escalation should ideally be reserved for patients with predictors of aggressive disease or those who do not respond to 5-ASA optimization. Premature treatment escalation to advanced therapies (including biologics and oral small molecules) may have long-term health and financial consequences. This paper provides consensus-based expert recommendations and a treatment algorithm, based on current evidence and practices, to assist decision-making in real-world settings.


Result Analysis
Print
Save
E-mail