1.Association of Rapidly Elevated Plasma Tau Protein With Cognitive Decline in Patients With Amnestic Mild Cognitive Impairment and Alzheimer’s Disease
Che-Sheng CHU ; Yu-Kai LIN ; Chia-Lin TSAI ; Yueh-Feng SUNG ; Chia-Kuang TSAI ; Guan-Yu LIN ; Chien-An KO ; Yi LIU ; Chih-Sung LIANG ; Fu-Chi YANG
Psychiatry Investigation 2025;22(2):130-139
Objective:
Whether elevation in plasma levels of amyloid and tau protein biomarkers are better indicators of cognitive decline than higher baseline levels in patients with amnestic mild cognitive impairment (aMCI) and Alzheimer’s disease (AD) remains understudied.
Methods:
We included 67 participants with twice testing for AD-related plasma biomarkers via immunomagnetic reduction (IMR) assays (amyloid beta [Aβ]1-40, Aβ1-42, total tau [t-Tau], phosphorylated tau [p-Tau] 181, and alpha-synuclein [α-Syn]) and the Mini-Mental State Examination (MMSE) over a 1-year interval. We examined the correlation between biomarker levels (baseline vs. longitudinal change) and annual changes in the MMSE scores. Receiver operating characteristic curve analysis was conducted to compare the biomarkers.
Results:
After adjustment, faster cognitive decline was correlated with lower baseline levels of t-Tau (β=0.332, p=0.030) and p-Tau 181 (β=0.369, p=0.015) and rapid elevation of t-Tau (β=-0.330, p=0.030) and p-Tau 181 levels (β=-0.431, p=0.004). However, the levels (baseline and longitudinal changes) of Aβ1-40, Aβ1-42, and α-Syn were not correlated with cognitive decline. aMCI converters had lower baseline levels of p-Tau 181 (p=0.002) but larger annual changes (p=0.001) than aMCI non-converters. The change in p-Tau 181 levels showed better discriminatory capacity than the change in t-Tau levels in terms of identifying AD conversion in patients with aMCI, with an area under curve of 86.7% versus 72.2%.
Conclusion
We found changes in p-Tau 181 levels may be a suitable biomarker for identifying AD conversion.
2.Association of Rapidly Elevated Plasma Tau Protein With Cognitive Decline in Patients With Amnestic Mild Cognitive Impairment and Alzheimer’s Disease
Che-Sheng CHU ; Yu-Kai LIN ; Chia-Lin TSAI ; Yueh-Feng SUNG ; Chia-Kuang TSAI ; Guan-Yu LIN ; Chien-An KO ; Yi LIU ; Chih-Sung LIANG ; Fu-Chi YANG
Psychiatry Investigation 2025;22(2):130-139
Objective:
Whether elevation in plasma levels of amyloid and tau protein biomarkers are better indicators of cognitive decline than higher baseline levels in patients with amnestic mild cognitive impairment (aMCI) and Alzheimer’s disease (AD) remains understudied.
Methods:
We included 67 participants with twice testing for AD-related plasma biomarkers via immunomagnetic reduction (IMR) assays (amyloid beta [Aβ]1-40, Aβ1-42, total tau [t-Tau], phosphorylated tau [p-Tau] 181, and alpha-synuclein [α-Syn]) and the Mini-Mental State Examination (MMSE) over a 1-year interval. We examined the correlation between biomarker levels (baseline vs. longitudinal change) and annual changes in the MMSE scores. Receiver operating characteristic curve analysis was conducted to compare the biomarkers.
Results:
After adjustment, faster cognitive decline was correlated with lower baseline levels of t-Tau (β=0.332, p=0.030) and p-Tau 181 (β=0.369, p=0.015) and rapid elevation of t-Tau (β=-0.330, p=0.030) and p-Tau 181 levels (β=-0.431, p=0.004). However, the levels (baseline and longitudinal changes) of Aβ1-40, Aβ1-42, and α-Syn were not correlated with cognitive decline. aMCI converters had lower baseline levels of p-Tau 181 (p=0.002) but larger annual changes (p=0.001) than aMCI non-converters. The change in p-Tau 181 levels showed better discriminatory capacity than the change in t-Tau levels in terms of identifying AD conversion in patients with aMCI, with an area under curve of 86.7% versus 72.2%.
Conclusion
We found changes in p-Tau 181 levels may be a suitable biomarker for identifying AD conversion.
3.Association of Rapidly Elevated Plasma Tau Protein With Cognitive Decline in Patients With Amnestic Mild Cognitive Impairment and Alzheimer’s Disease
Che-Sheng CHU ; Yu-Kai LIN ; Chia-Lin TSAI ; Yueh-Feng SUNG ; Chia-Kuang TSAI ; Guan-Yu LIN ; Chien-An KO ; Yi LIU ; Chih-Sung LIANG ; Fu-Chi YANG
Psychiatry Investigation 2025;22(2):130-139
Objective:
Whether elevation in plasma levels of amyloid and tau protein biomarkers are better indicators of cognitive decline than higher baseline levels in patients with amnestic mild cognitive impairment (aMCI) and Alzheimer’s disease (AD) remains understudied.
Methods:
We included 67 participants with twice testing for AD-related plasma biomarkers via immunomagnetic reduction (IMR) assays (amyloid beta [Aβ]1-40, Aβ1-42, total tau [t-Tau], phosphorylated tau [p-Tau] 181, and alpha-synuclein [α-Syn]) and the Mini-Mental State Examination (MMSE) over a 1-year interval. We examined the correlation between biomarker levels (baseline vs. longitudinal change) and annual changes in the MMSE scores. Receiver operating characteristic curve analysis was conducted to compare the biomarkers.
Results:
After adjustment, faster cognitive decline was correlated with lower baseline levels of t-Tau (β=0.332, p=0.030) and p-Tau 181 (β=0.369, p=0.015) and rapid elevation of t-Tau (β=-0.330, p=0.030) and p-Tau 181 levels (β=-0.431, p=0.004). However, the levels (baseline and longitudinal changes) of Aβ1-40, Aβ1-42, and α-Syn were not correlated with cognitive decline. aMCI converters had lower baseline levels of p-Tau 181 (p=0.002) but larger annual changes (p=0.001) than aMCI non-converters. The change in p-Tau 181 levels showed better discriminatory capacity than the change in t-Tau levels in terms of identifying AD conversion in patients with aMCI, with an area under curve of 86.7% versus 72.2%.
Conclusion
We found changes in p-Tau 181 levels may be a suitable biomarker for identifying AD conversion.
4.Association of Rapidly Elevated Plasma Tau Protein With Cognitive Decline in Patients With Amnestic Mild Cognitive Impairment and Alzheimer’s Disease
Che-Sheng CHU ; Yu-Kai LIN ; Chia-Lin TSAI ; Yueh-Feng SUNG ; Chia-Kuang TSAI ; Guan-Yu LIN ; Chien-An KO ; Yi LIU ; Chih-Sung LIANG ; Fu-Chi YANG
Psychiatry Investigation 2025;22(2):130-139
Objective:
Whether elevation in plasma levels of amyloid and tau protein biomarkers are better indicators of cognitive decline than higher baseline levels in patients with amnestic mild cognitive impairment (aMCI) and Alzheimer’s disease (AD) remains understudied.
Methods:
We included 67 participants with twice testing for AD-related plasma biomarkers via immunomagnetic reduction (IMR) assays (amyloid beta [Aβ]1-40, Aβ1-42, total tau [t-Tau], phosphorylated tau [p-Tau] 181, and alpha-synuclein [α-Syn]) and the Mini-Mental State Examination (MMSE) over a 1-year interval. We examined the correlation between biomarker levels (baseline vs. longitudinal change) and annual changes in the MMSE scores. Receiver operating characteristic curve analysis was conducted to compare the biomarkers.
Results:
After adjustment, faster cognitive decline was correlated with lower baseline levels of t-Tau (β=0.332, p=0.030) and p-Tau 181 (β=0.369, p=0.015) and rapid elevation of t-Tau (β=-0.330, p=0.030) and p-Tau 181 levels (β=-0.431, p=0.004). However, the levels (baseline and longitudinal changes) of Aβ1-40, Aβ1-42, and α-Syn were not correlated with cognitive decline. aMCI converters had lower baseline levels of p-Tau 181 (p=0.002) but larger annual changes (p=0.001) than aMCI non-converters. The change in p-Tau 181 levels showed better discriminatory capacity than the change in t-Tau levels in terms of identifying AD conversion in patients with aMCI, with an area under curve of 86.7% versus 72.2%.
Conclusion
We found changes in p-Tau 181 levels may be a suitable biomarker for identifying AD conversion.
5.Association of Rapidly Elevated Plasma Tau Protein With Cognitive Decline in Patients With Amnestic Mild Cognitive Impairment and Alzheimer’s Disease
Che-Sheng CHU ; Yu-Kai LIN ; Chia-Lin TSAI ; Yueh-Feng SUNG ; Chia-Kuang TSAI ; Guan-Yu LIN ; Chien-An KO ; Yi LIU ; Chih-Sung LIANG ; Fu-Chi YANG
Psychiatry Investigation 2025;22(2):130-139
Objective:
Whether elevation in plasma levels of amyloid and tau protein biomarkers are better indicators of cognitive decline than higher baseline levels in patients with amnestic mild cognitive impairment (aMCI) and Alzheimer’s disease (AD) remains understudied.
Methods:
We included 67 participants with twice testing for AD-related plasma biomarkers via immunomagnetic reduction (IMR) assays (amyloid beta [Aβ]1-40, Aβ1-42, total tau [t-Tau], phosphorylated tau [p-Tau] 181, and alpha-synuclein [α-Syn]) and the Mini-Mental State Examination (MMSE) over a 1-year interval. We examined the correlation between biomarker levels (baseline vs. longitudinal change) and annual changes in the MMSE scores. Receiver operating characteristic curve analysis was conducted to compare the biomarkers.
Results:
After adjustment, faster cognitive decline was correlated with lower baseline levels of t-Tau (β=0.332, p=0.030) and p-Tau 181 (β=0.369, p=0.015) and rapid elevation of t-Tau (β=-0.330, p=0.030) and p-Tau 181 levels (β=-0.431, p=0.004). However, the levels (baseline and longitudinal changes) of Aβ1-40, Aβ1-42, and α-Syn were not correlated with cognitive decline. aMCI converters had lower baseline levels of p-Tau 181 (p=0.002) but larger annual changes (p=0.001) than aMCI non-converters. The change in p-Tau 181 levels showed better discriminatory capacity than the change in t-Tau levels in terms of identifying AD conversion in patients with aMCI, with an area under curve of 86.7% versus 72.2%.
Conclusion
We found changes in p-Tau 181 levels may be a suitable biomarker for identifying AD conversion.
6.Multimorbidity Pattern and Risk for Mortality Among Patients With Dementia: A Nationwide Cohort Study Using Latent Class Analysis
Che-Sheng CHU ; Shu-Li CHENG ; Ya-Mei BAI ; Tung-Ping SU ; Shih-Jen TSAI ; Tzeng-Ji CHEN ; Fu-Chi YANG ; Mu-Hong CHEN ; Chih-Sung LIANG
Psychiatry Investigation 2023;20(9):861-869
Objective:
Individuals with dementia are at a substantially elevated risk for mortality; however, few studies have examined multimorbidity patterns and determined the inter-relationship between these comorbidities in predicting mortality risk.
Methods:
This is a prospective cohort study. Data from 6,556 patients who were diagnosed with dementia between 1997 and 2012 using the Taiwan National Health Insurance Research Database were analyzed. Latent class analysis was performed using 16 common chronic conditions to identify mortality risk among potentially different latent classes. Logistic regression was performed to determine the adjusted association of the determined latent classes with the 5-year mortality rate.
Results:
With adjustment for age, a three-class model was identified, with 42.7% of participants classified as “low comorbidity class (cluster 1)”, 44.2% as “cardiometabolic multimorbidity class (cluster 2)”, and 13.1% as “FRINGED class (cluster 3, characterized by FRacture, Infection, NasoGastric feeding, and bleEDing over upper gastrointestinal tract).” The incidence of 5-year mortality was 17.6% in cluster 1, 26.7% in cluster 2, and 59.6% in cluster 3. Compared with cluster 1, the odds ratio for mortality was 9.828 (95% confidence interval [CI]=6.708–14.401; p<0.001) in cluster 2 and 1.582 (95% CI=1.281–1.953; p<0.001) in cluster 3.
Conclusion
Among patients with dementia, the risk for 5-year mortality was highest in the subpopulation characterized by fracture, urinary and pulmonary infection, upper gastrointestinal bleeding, and nasogastric intubation, rather than cancer or cardiometabolic comorbidities. These findings may improve decision-making and advance care planning for patients with dementia.
7.The Clinical Observation of Inflammation Theory for Depression:The Initiative of the Formosa Long COVID Multicenter Study (FOCuS)
Shu-Tsen LIU ; Sheng-Che LIN ; Jane Pei-Chen CHANG ; Kai-Jie YANG ; Che-Sheng CHU ; Chia-Chun YANG ; Chih-Sung LIANG ; Ching-Fang SUN ; Shao-Cheng WANG ; Senthil Kumaran SATYANARAYANAN ; Kuan-Pin SU
Clinical Psychopharmacology and Neuroscience 2023;21(1):10-18
There is growing evidence that the coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is associated with increased risks of psychiatric sequelae. Depression, anxiety, cognitive impairments, sleep disturbance, and fatigue during and after the acute phase of COVID-19 are prevalent, long-lasting, and exerting negative consequences on well-being and imposing a huge burden on healthcare systems and society. This current review presented timely updates of clinical research findings, particularly focusing on the pathogenetic mechanisms underlying the neuropsychiatric sequelae, and identified potential key targets for developing effective treatment strategies for long COVID. In addition, we introduced the Formosa Long COVID Multicenter Study (FOCuS), which aims to apply the inflammation theory to the pathogenesis and the psychosocial and nutrition treatments of post-COVID depression and anxiety.
8.Personalization of Repetitive Transcranial Magnetic Stimulation for the Treatment of Major Depressive Disorder According to the Existing Psychiatric Comorbidity
Po-Han CHOU ; Yen-Feng LIN ; Ming-Kuei LU ; Hsin-An CHANG ; Che-Sheng CHU ; Wei Hung CHANG ; Taishiro KISHIMOTO ; Alexander T. SACK ; Kuan-Pin SU
Clinical Psychopharmacology and Neuroscience 2021;19(2):190-205
Repetitive transcranial magnetic stimulation (rTMS) and intermittent theta-burst stimulation (iTBS) are evidenced-based treatments for patients with major depressive disorder (MDD) who fail to respond to standard first-line therapies. However, although various TMS protocols have been proven to be clinically effective, the response rate varies across clinical applications due to the heterogeneity of real-world psychiatric comorbidities, such as generalized anxiety disorder, posttraumatic stress disorder, panic disorder, or substance use disorder, which are often observed in patients with MDD. Therefore, individualized treatment approaches are important to increase treatment response by assigning a given patient to the most optimal TMS treatment protocol based on his or her individual profile. This literature review summarizes different rTMS or TBS protocols that have been applied in researches investigating MDD patients with certain psychiatric comorbidities and discusses biomarkers that may be used to predict rTMS treatment response. Furthermore, we highlight the need for the validation of neuroimaging and electrophysiological biomarkers associated with rTMS treatment responses. Finally, we discuss on which directions future efforts should focus for developing the personalization of the treatment of depression with rTMS or iTBS.
9.Personalization of Repetitive Transcranial Magnetic Stimulation for the Treatment of Major Depressive Disorder According to the Existing Psychiatric Comorbidity
Po-Han CHOU ; Yen-Feng LIN ; Ming-Kuei LU ; Hsin-An CHANG ; Che-Sheng CHU ; Wei Hung CHANG ; Taishiro KISHIMOTO ; Alexander T. SACK ; Kuan-Pin SU
Clinical Psychopharmacology and Neuroscience 2021;19(2):190-205
Repetitive transcranial magnetic stimulation (rTMS) and intermittent theta-burst stimulation (iTBS) are evidenced-based treatments for patients with major depressive disorder (MDD) who fail to respond to standard first-line therapies. However, although various TMS protocols have been proven to be clinically effective, the response rate varies across clinical applications due to the heterogeneity of real-world psychiatric comorbidities, such as generalized anxiety disorder, posttraumatic stress disorder, panic disorder, or substance use disorder, which are often observed in patients with MDD. Therefore, individualized treatment approaches are important to increase treatment response by assigning a given patient to the most optimal TMS treatment protocol based on his or her individual profile. This literature review summarizes different rTMS or TBS protocols that have been applied in researches investigating MDD patients with certain psychiatric comorbidities and discusses biomarkers that may be used to predict rTMS treatment response. Furthermore, we highlight the need for the validation of neuroimaging and electrophysiological biomarkers associated with rTMS treatment responses. Finally, we discuss on which directions future efforts should focus for developing the personalization of the treatment of depression with rTMS or iTBS.
10.Credibility Judgment Predictors for Child Sexual Abuse Reports in Forensic Psychiatric Evaluations
Ling Hsiang WANG ; Yu Yung HUNG ; Philip C CHOW ; Che Sheng CHU ; Hsing Jung LI ; Ti LU ; Ching Hong TSAI
Psychiatry Investigation 2019;16(2):139-144
OBJECTIVE:
We intended to analyze the credibility judgment in written forensic psychiatric reports of child sexual abuse registered in Southern Taiwan.
METHODS:
Ninety-six cases of child sexual abuse between August 2010 and October 2017 encountered in two hospitals were analyzed. The results in these reports were categorized into credible and non-credible. We identified the factors that distinguished between the two groups in bivariate analyses using chi-square test. A binary logistic regression analysis was performed to determine whether the factors that significantly correlated in the bivariate analyses were independent predictors of credible judgments.
RESULTS:
Among 96 cases, 70 (73%) were judged as credible. Consistent testimonies of children (odds ratio=40.82) and multiple abuse events (odds ratio=6.05) were positive variables independently related to the sexual abuse allegations judged as credible.
CONCLUSION
The number of allegations judged as credible in this study was slightly higher than that reported in other studies. Our findings about predictors for credible cases are not in line with those reported previously. Due to the differences in resources of the cases and backgrounds of the evaluators among multiple studies, direct comparisons with previous studies must be treated with caution.

Result Analysis
Print
Save
E-mail