1.Dimethyloxalylglycine improves functional recovery through inhibiting cell apoptosis and enhancing blood-spinal cord barrier repair after spinal cord injury.
Wen HAN ; Chao-Chao DING ; Jie WEI ; Dan-Dan DAI ; Nan WANG ; Jian-Min REN ; Hai-Lin CHEN ; Ling XIE
Chinese Journal of Traumatology 2025;28(5):361-369
PURPOSE:
The secondary damage of spinal cord injury (SCI) starts from the collapse of the blood spinal cord barrier (BSCB) to chronic and devastating neurological deficits. Thereby, the retention of the integrity and permeability of BSCB is well-recognized as one of the major therapies to promote functional recovery after SCI. Previous studies have demonstrated that activation of hypoxia inducible factor-1α (HIF-1α) provides anti-apoptosis and neuroprotection in SCI. Endogenous HIF-1α, rapidly degraded by prolylhydroxylase, is insufficient for promoting functional recovery. Dimethyloxalylglycine (DMOG), a highly selective inhibitor of prolylhydroxylase, has been reported to have a positive effect on axon regeneration. However, the roles and underlying mechanisms of DMOG in BSCB restoration remain unclear. Herein, we aim to investigate pathological changes of BSCB restoration in rats with SCI treated by DOMG and evaluate the therapeutic effects of DMOG.
METHODS:
The work was performed from 2022 to 2023. In this study, Allen's impact model and human umbilical vein endothelial cells were employed to explore the mechanism of DMOG. In the phenotypic validation experiment, the rats were randomly divided into 3 groups: sham group, SCI group, and SCI + DMOG group (10 rats for each). Histological analysis via Nissl staining, Basso-Beattie-Bresnahan scale, and footprint analysis was used to evaluate the functional recovery after SCI. Western blotting, TUNEL assay, and immunofluorescence staining were employed to exhibit levels of tight junction and adhesion junction of BSCB, HIF-1α, cell apoptosis, and endoplasmic reticulum (ER) stress. The one-way ANOVA test was used for statistical analysis. The difference was considered statistically significant at p < 0.05.
RESULTS:
In this study, we observed the expression of HIF-1α reduced in the SCI model. DMOG treatment remarkably augmented HIF-1α level, alleviated endothelial cells apoptosis and disruption of BSCB, and enhanced functional recovery post-SCI. Besides, the administration of DMOG offset the activation of ER stress induced by SCI, but this phenomenon was blocked by tunicamycin (an ER stress activator). Finally, we disclosed that DMOG maintained the integrity and permeability of BSCB by inhibiting ER stress, and inhibition of HIF-1α erased the protection from DMOG.
CONCLUSIONS
Our findings illustrate that the administration of DMOG alleviates the devastation of BSCB and HIF-1α-induced inhibition of ER stress.
Spinal Cord Injuries/pathology*
;
Animals
;
Apoptosis/drug effects*
;
Amino Acids, Dicarboxylic/therapeutic use*
;
Recovery of Function/drug effects*
;
Rats
;
Rats, Sprague-Dawley
;
Hypoxia-Inducible Factor 1, alpha Subunit/metabolism*
;
Male
;
Spinal Cord/blood supply*
2.Quercetin Confers Protection against Sepsis-Related Acute Respiratory Distress Syndrome by Suppressing ROS/p38 MAPK Pathway.
Wei-Chao DING ; Juan CHEN ; Quan LI ; Yi REN ; Meng-Meng WANG ; Wei ZHANG ; Xiao-Hang JI ; Xin-Yao WU ; Shi-Nan NIE ; Chang-Bao HUANG ; Zhao-Rui SUN
Chinese journal of integrative medicine 2025;31(11):1011-1020
OBJECTIVE:
To identify the underlying mechanism by which quercetin (Que) alleviates sepsis-related acute respiratory distress syndrome (ARDS).
METHODS:
In vivo, C57BL/6 mice were assigned to sham, cecal ligation and puncture (CLP), and CLP+Que (50 mg/kg) groups (n=15 per group) by using a random number table. The sepsisrelated ARDS mouse model was established using the CLP method. In vitro, the murine alveolar macrophages (MH-S) cells were classified into control, lipopolysaccharide (LPS), LPS+Que (10 μmol/L), and LPS+Que+acetylcysteine (NAC, 5 mmol/L) groups. The effect of Que on oxidative stress, inflammation, and apoptosis in mice lungs and MH-S cells was determined, and the mechanism with reactive oxygen species (ROS)/p38 mitogen-activated protein kinase (MAPK) pathway was also explored both in vivo and in vitro.
RESULTS:
Que alleviated lung injury in mice, as reflected by a reversal of pulmonary histopathologic changes as well as a reduction in lung wet/dry weight ratio and neutrophil infiltration (P<0.05 or P<0.01). Additionally, Que improved the survival rate and relieved gas exchange impairment in mice (P<0.01). Que treatment also remarkedly reduced malondialdehyde formation, superoxide dismutase and catalase depletion, and cell apoptosis both in vivo and in vitro (P<0.05 or P<0.01). Moreover, Que treatment diminished the release of inflammatory factors interleukin (IL)-1β, tumor necrosis factor-α, and IL-6 both in vivo and in vitro (P<0.05 or P<0.01). Mechanistic investigation clarifified that Que administration led to a decline in the phosphorylation of p38 MAPK in addition to the suppression of ROS expression (P<0.01). Furthermore, in LPS-induced MH-S cells, ROS inhibitor NAC further inhibited ROS/p38 MAPK pathway, as well as oxidative stress, inflammation, and cell apoptosis on the basis of Que treatment (P<0.05 or P<0.01).
CONCLUSION
Que was found to exert anti-oxidative, anti-inflammatory, and anti-apoptotic effects by suppressing the ROS/p38 MAPK pathway, thereby conferring protection for mice against sepsis-related ARDS.
Animals
;
Sepsis/drug therapy*
;
Quercetin/therapeutic use*
;
Respiratory Distress Syndrome/enzymology*
;
p38 Mitogen-Activated Protein Kinases/metabolism*
;
Mice, Inbred C57BL
;
Reactive Oxygen Species/metabolism*
;
Apoptosis/drug effects*
;
Male
;
Oxidative Stress/drug effects*
;
MAP Kinase Signaling System/drug effects*
;
Lung/drug effects*
;
Mice
;
Lipopolysaccharides
;
Macrophages, Alveolar/pathology*
;
Inflammation/pathology*
;
Protective Agents/therapeutic use*
3.Single-cell transcriptomics identifies PDGFRA+ progenitors orchestrating angiogenesis and periodontal tissue regeneration.
Jianing LIU ; Junxi HE ; Ziqi ZHANG ; Lu LIU ; Yuan CAO ; Xiaohui ZHANG ; Xinyue CAI ; Xinyan LUO ; Xiao LEI ; Nan ZHANG ; Hao WANG ; Ji CHEN ; Peisheng LIU ; Jiongyi TIAN ; Jiexi LIU ; Yuru GAO ; Haokun XU ; Chao MA ; Shengfeng BAI ; Yubohan ZHANG ; Yan JIN ; Chenxi ZHENG ; Bingdong SUI ; Fang JIN
International Journal of Oral Science 2025;17(1):56-56
Periodontal bone defects, primarily caused by periodontitis, are highly prevalent in clinical settings and manifest as bone fenestration, dehiscence, or attachment loss, presenting a significant challenge to oral health. In regenerative medicine, harnessing developmental principles for tissue repair offers promising therapeutic potential. Of particular interest is the condensation of progenitor cells, an essential event in organogenesis that has inspired clinically effective cell aggregation approaches in dental regeneration. However, the precise cellular coordination mechanisms during condensation and regeneration remain elusive. Here, taking the tooth as a model organ, we employed single-cell RNA sequencing to dissect the cellular composition and heterogeneity of human dental follicle and dental papilla, revealing a distinct Platelet-derived growth factor receptor alpha (PDGFRA) mesenchymal stem/stromal cell (MSC) population with remarkable odontogenic potential. Interestingly, a reciprocal paracrine interaction between PDGFRA+ dental follicle stem cells (DFSCs) and CD31+ Endomucin+ endothelial cells (ECs) was mediated by Vascular endothelial growth factor A (VEGFA) and Platelet-derived growth factor subunit BB (PDGFBB). This crosstalk not only maintains the functionality of PDGFRA+ DFSCs but also drives specialized angiogenesis. In vivo periodontal bone regeneration experiments further reveal that communication between PDGFRA+ DFSC aggregates and recipient ECs is essential for effective angiogenic-osteogenic coupling and rapid tissue repair. Collectively, our results unravel the importance of MSC-EC crosstalk mediated by the VEGFA and PDGFBB-PDGFRA reciprocal signaling in orchestrating angiogenesis and osteogenesis. These findings not only establish a framework for deciphering and promoting periodontal bone regeneration in potential clinical applications but also offer insights for future therapeutic strategies in dental or broader regenerative medicine.
Receptor, Platelet-Derived Growth Factor alpha/metabolism*
;
Humans
;
Neovascularization, Physiologic/physiology*
;
Dental Sac/cytology*
;
Single-Cell Analysis
;
Transcriptome
;
Mesenchymal Stem Cells/metabolism*
;
Bone Regeneration
;
Animals
;
Dental Papilla/cytology*
;
Periodontium/physiology*
;
Stem Cells/metabolism*
;
Regeneration
;
Angiogenesis
4.Association of Loneliness and Social Isolation with Ischemic Heart Disease: A Bidirectional and Network Mendelian Randomization Study.
Shu Yao SU ; Wan Yue WANG ; Chen Xi YUAN ; Zhen Nan LIN ; Xiang Feng LU ; Fang Chao LIU
Biomedical and Environmental Sciences 2025;38(3):351-364
OBJECTIVE:
Observational studies have shown inconsistent associations of loneliness or social isolation (SI) with ischemic heart disease (IHD), with unknown mediators.
METHODS:
Using data from genome-wide association studies of predominantly European ancestry, we performed a bidirectional two-sample Mendelian Randomization (MR) study to estimate causal effects of loneliness ( N = 487,647) and SI traits on IHD ( N = 184,305). SI traits included whether individuals lived alone, participated in various types of social activities, and how often they had contact with friends or family ( N = 459,830 to 461,369). A network MR study was conducted to evaluate the mediating roles of 20 candidate mediators, including metabolic, behavioral and psychological factors.
RESULTS:
Loneliness increased IHD risk ( OR= 2.129; 95% confidence interval [ CI]: 1.380 to 3.285), mediated by body fat percentage, waist-hip ratio, total cholesterol, and low-density lipoprotein cholesterol. For SI traits, only fewer social activities increased IHD risk ( OR= 1.815; 95% CI: 1.189 to 2.772), mediated by hypertension, high-density lipoprotein cholesterol, triglycerides, fasting insulin, and smoking cessation. No reverse causality of IHD with loneliness and SI was found.
CONCLUSION
These findings suggested more attention should be paid to individuals who feel lonely and have fewer social activities to prevent IHD, with several mediators as prioritized targets for intervention.
Loneliness/psychology*
;
Humans
;
Mendelian Randomization Analysis
;
Social Isolation
;
Myocardial Ischemia/etiology*
;
Male
;
Female
;
Middle Aged
;
Genome-Wide Association Study
;
Risk Factors
;
Aged
5.Correlation Analysis of the Number of Hemophagocytes and Peripheral Blood Cells in Bone Marrow
Meng-Ting MA ; Wan-Lin TIAN ; Nan WU ; Qiang ZHANG ; Feng-Chao WANG
Journal of Experimental Hematology 2024;32(1):269-273
Objective:To study the correlation between the number of hemophagocytes and peripheral blood cells in bone marrow of patients with fever of unknown origin.Methods:A total of 465 patients with fever of unknown origin in our hospital from January 2019 to December 2021 were selected as the research objects,which was to reviewed retrospectively the correlation between the number of hemophagocytes and peripheral blood cells in bone marrow.Results:The positive rates of hemophagocytes detected in the three lines decreased group,the two lines decreased group,the one line decreased group,normal group of the three lines and at least one of the three lines increased group were 86.4%,62.1%,38.3%,34.6%and 33.3%,respectively.The number of hemophagocytes per unit area in the three lines decreased group was significantly higher than that in the other four groups(P<0.001).The number of hemophagocytes per unit area in the two lines decreased group was higher than that in the one line decreased group,normal group of three lines and at least one of the three lines increased group(P<0.01).There was no significant difference in the number of hemophagocytes per unit area between the group with a decreased number of one line and the other two groups with a normal number of three lines and the group with at least one increased number of three lines(P>0.05).The missed rates of hemophagocytes in the five groups were 15.78%,22.03%,62.22%,77.78%and 53.84%,respectively.Conclusion:For patients with fever of unknown origin,especially those with obvious decrease in the number of three lines and two lines in peripheral blood cells,which should pay attention to the detection of hemophagocytes in bone marrow.Meanwhile,if the number of three lines was normal even at least one of the three lines increased,the presence of hemophagocytes in the bone marrow slice should be also carefully observed.
6.Effect of TLK2 Expression Regulated by MiR-21 on Proliferation and Apoptosis of Acute Myeloid Leukemia Cells
Bo LIANG ; Jun-Jie YIN ; Sheng-Nan ZHANG ; Chao ZHANG ; Zi-Long HU ; Yi WANG
Journal of Experimental Hematology 2024;32(3):658-662
Objective:To investigate the effect of TLK2 expression regulated by miR-21 on proliferation and apoptosis of acute myeloid leukemia cells.Methods:Seventy patients with AML admitted to our hospital from January 2019 to July 2022 were selected,while 30 patients with iron deficiency anemia were selected as the control group.Bone marrow mononuclear cells(BMMNCs)of the patients were obtained using Ficoll density gradient centrifugation.RT-qPCR was used to determine the expression levels of miR-21 and TLK2 mRNA in BMMNCs.Mimics-miR-21,mimics-NC,inhibitor-miR-21,inhibitor-NC and NC were transfected into HL-60 cells using liposome-mediated transfection technology.CCK-8 method was used to determine the activity of transfected HL-60 cells after treatment with cytarabine.The apoptosis rate of HL-60 transfected cells was determined by TUNEL method.The expression of TLK2 mRNA in HL-60 cells transfected with inhibitor-miR-21 was determined by RT-qPCR.Results:The relative expression levels of miR-21 and TLK2 mRNA in BMMNCs of AML patients were significantly higher than those of controls(both P<0.05).After HL-60 cells were treated with cytarabine,both the cell activity of inhibitor-miR-21 group and mimics-miR-21 group decreased significantly with the increase of cytarabine concentration(both P<0.05).However,at each concentration point of cytarabine,the cell activity of inhibitor-miR-21 group was lower than that of control group(P<0.05),while mimics-miR-21 group was higher than control group(P<0.05).After HL-60 cells were treated with cytarabine,the apoptosis rate of inhibitor-miR-21 group was significantly increased(P<0.05),while that of mimics-miR-21 group was significantly decreased(P<0.05).After HL-60 cells were treated with inhibitor-miR-21,the relative expression of TLK2 mRNA decreased significantly(P<0.05).Conclusion:miR-21 is highly expressed in AML patients,which may promote the apoptosis of AML cells by inhibiting the expression of TLK2.
7.Chemical constituents from n-butanol fraction of Corydalis impatiens and their antioxidant activities
Chao-Fan DENG ; Ze-Dong NAN ; Zhen-Zhen WANG ; Jing-Ling YANG ; Zhen-Yu AN ; Xiu-Li WU ; Xiao-Li MA ; Zhi-Bo JIANG
Chinese Traditional Patent Medicine 2024;46(11):3671-3676
AIM To study the chemical constituents from n-butanol fraction of Corydalis impatiens(Pall.)Fisch.and their antioxidant activities.METHODS The n-butanol fraction was isolated and purified by silica gel,MCI,ODS,Sephadex LH-20 and semi-preparative HPLC,then the structures of obtained compounds were identified by physicochemical properties and spectral data.The antioxidant activities were determined by DPPH method and tyrosinase method.RESULTS Fourteen compounds were isolated and identified as nicotinamide(1),methyl L-pyroglutamate(2),bungeanoline F(3),monomethyl fumarate(4),5-hydroxymethylfurfural(5),4-hydroxybenzoic acid(6),hydroxybenzoate(7),methyl 3,4-dihydroxybenzoate(8),methyl ferulate(9),dimethylcaffeic acid(10),dimethyl feruloyl malate(11),(-)-4-O-feruloylquinic acid(12),syringaresinol(13)and(-)-loliolide(14).Compounds 1,8,11 and 13 showed strong antioxidant activites on DPPH free radicals,with IC50 values ranging from 54.47 to 97.4 μmol/L.Compound 13 had potential inhibitory effect on tyrosinase.CONCLUSION Compounds 4-14 are first isolated from Corydalis genus,and 3 is isolated from this plant for the first time.Compounds 1,8,11 and 13 have strong antioxidant activities.
8.Expert consensus on the diagnosis and treatment of osteoporotic proximal humeral fracture with integrated traditional Chinese and Western medicine (version 2024)
Xiao CHEN ; Hao ZHANG ; Man WANG ; Guangchao WANG ; Jin CUI ; Wencai ZHANG ; Fengjin ZHOU ; Qiang YANG ; Guohui LIU ; Zhongmin SHI ; Lili YANG ; Zhiwei WANG ; Guixin SUN ; Biao CHENG ; Ming CAI ; Haodong LIN ; Hongxing SHEN ; Hao SHEN ; Yunfei ZHANG ; Fuxin WEI ; Feng NIU ; Chao FANG ; Huiwen CHEN ; Shaojun SONG ; Yong WANG ; Jun LIN ; Yuhai MA ; Wei CHEN ; Nan CHEN ; Zhiyong HOU ; Xin WANG ; Aiyuan WANG ; Zhen GENG ; Kainan LI ; Dongliang WANG ; Fanfu FANG ; Jiacan SU
Chinese Journal of Trauma 2024;40(3):193-205
Osteoporotic proximal humeral fracture (OPHF) is one of the common osteoporotic fractures in the aged, with an incidence only lower than vertebral compression fracture, hip fracture, and distal radius fracture. OPHF, secondary to osteoporosis and characterized by poor bone quality, comminuted fracture pattern, slow healing, and severely impaired shoulder joint function, poses a big challenge to the current clinical diagnosis and treatment. In the field of diagnosis, treatment, and rehabilitation of OPHF, traditional Chinese and Western medicine have accumulated rich experience and evidence from evidence-based medicine and achieved favorable outcomes. However, there is still a lack of guidance from a relevant consensus as to how to integrate the advantages of the two medical systems and achieve the integrated diagnosis and treatment. To promote the diagnosis and treatment of OPHF with integrated traditional Chinese and Western medicine, relevant experts from Orthopedic Expert Committee of Geriatric Branch of Chinese Association of Gerontology and Geriatrics, Youth Osteoporosis Group of Orthopedic Branch of Chinese Medical Association, Osteoporosis Group of Orthopedic Surgeon Branch of Chinese Medical Doctor Association, and Osteoporosis Committee of Shanghai Association of Integrated Traditional Chinese and Western Medicine have been organized to formulate Expert consensus on the diagnosis and treatment of osteoporotic proximal humeral fracture with integrated traditional Chinese and Western medicine ( version 2024) by searching related literatures and based on the evidences from evidence-based medicine. This consensus consists of 13 recommendations about the diagnosis, treatment and rehabilitation of OPHF with integrated traditional Chinese medicine and Western medicine, aimed at standardizing, systematizing, and personalizing the diagnosis and treatment of OPHF with integrated traditional Chinse and Western medicine to improve the patients ′ function.
9.Aptasensor for Detection of Small Molecules Based on Displacement Fluorescent Probe
Cheng YANG ; Sheng-Nan CUI ; Yue WANG ; Guo-Feng WANG ; Cheng-Ming LI ; Shuang-Chao GU ; Chang-Ying XUE
Chinese Journal of Analytical Chemistry 2024;52(5):674-684,中插10-中插13
By using thioflavin T(ThT)as displacement-based fluorescent probes,three kinds of aptasensors were constructed for rapid detection of three kinds of small molecules such as ochratoxin A(OTA),aflatoxin B1(AFB1)and adenosine.In the absence of target molecule,ThT bound with the aptamer to form an aptamer-ThT complex and exhibited a significant fluorescence response.Upon the addition of target molecule,because of the higher affinity between target and aptamer than that between ThT and the aptamer,ThT was displaced by the target molecule from the aptamer-ThT complex,resulting in weakened fluorescence signal.Based on this principle,the target molecule could be detected quantitatively.Further study through circular dichroism spectra showed that there was no significant change in the conformation of the aptamer after addition of ThT or target molecules.The stoichiometric ratios of ThT to OTAapt,AFB1apt and Adeapt measured through the method of equimolar continuous variation was 1∶1,1∶1 and 2∶1,respectively,and their dissociation constants were all larger than those between the target molecule and its aptamer.Therefore,the principle of this detection method was the displacement of fluorescent probe(ThT)in aptamer-ThT complex by target molecule,resulting in decrease of fluorescence intensity.Under optimal experimental conditions,the limits of detection(LODs)were 0.8 nmol/L for OTA,1.3 nmol/L for AFB1,and 0.10 μmol/L for adenosine,respectively.This method was label-free,simple to operate,with low cost,good selectivity and high sensitivity.The developed assay kit based on this method could be used for actual sample detection.
10.Research progress of exercise improve non-alcoholic fatty liver disease
Yuan-Yuan WEI ; Qi-Chao HUANG ; Xiao-Jun XU ; Nan WANG ; Ming-Shu GAO
Medical Journal of Chinese People's Liberation Army 2024;49(10):1207-1212
Non-alcoholic fatty liver disease(NAFLD)is a common chronic liver disease characterized by excess fat accumulation within liver cells.The main causes include obesity,diabetes,and hyperlipidemia.In recent years,NAFLD and other metabolic diseases have become global public health issues.Although some progress has been made in the drug treatment of NAFLD,the efficacy is limited and there are many adverse effects.As a treatment method with high safety and few adverse effects,exercise therapy has good application prospects in the treatment of NAFLD and other metabolic diseases.However,challenges remain in overcoming patients'low exercise compliance and in finding safe and effective exercise therapy drug targets.This article explores the mechanisms and application prospects of exercise therapy in the treatment of NAFLD and other metabolic diseases,summarizes the energy consumption,metabolic pathways,and inter-organ communication induced by exercise,aiming to provide useful references for clinical practitioners.

Result Analysis
Print
Save
E-mail