1.Effect Analysis of Different Interventions to Improve Neuroinflammation in The Treatment of Alzheimer’s Disease
Jiang-Hui SHAN ; Chao-Yang CHU ; Shi-Yu CHEN ; Zhi-Cheng LIN ; Yu-Yu ZHOU ; Tian-Yuan FANG ; Chu-Xia ZHANG ; Biao XIAO ; Kai XIE ; Qing-Juan WANG ; Zhi-Tao LIU ; Li-Ping LI
Progress in Biochemistry and Biophysics 2025;52(2):310-333
Alzheimer’s disease (AD) is a central neurodegenerative disease characterized by progressive cognitive decline and memory impairment in clinical. Currently, there are no effective treatments for AD. In recent years, a variety of therapeutic approaches from different perspectives have been explored to treat AD. Although the drug therapies targeted at the clearance of amyloid β-protein (Aβ) had made a breakthrough in clinical trials, there were associated with adverse events. Neuroinflammation plays a crucial role in the onset and progression of AD. Continuous neuroinflammatory was considered to be the third major pathological feature of AD, which could promote the formation of extracellular amyloid plaques and intracellular neurofibrillary tangles. At the same time, these toxic substances could accelerate the development of neuroinflammation, form a vicious cycle, and exacerbate disease progression. Reducing neuroinflammation could break the feedback loop pattern between neuroinflammation, Aβ plaque deposition and Tau tangles, which might be an effective therapeutic strategy for treating AD. Traditional Chinese herbs such as Polygonum multiflorum and Curcuma were utilized in the treatment of AD due to their ability to mitigate neuroinflammation. Non-steroidal anti-inflammatory drugs such as ibuprofen and indomethacin had been shown to reduce the level of inflammasomes in the body, and taking these drugs was associated with a low incidence of AD. Biosynthetic nanomaterials loaded with oxytocin were demonstrated to have the capability to anti-inflammatory and penetrate the blood-brain barrier effectively, and they played an anti-inflammatory role via sustained-releasing oxytocin in the brain. Transplantation of mesenchymal stem cells could reduce neuroinflammation and inhibit the activation of microglia. The secretion of mesenchymal stem cells could not only improve neuroinflammation, but also exert a multi-target comprehensive therapeutic effect, making it potentially more suitable for the treatment of AD. Enhancing the level of TREM2 in microglial cells using gene editing technologies, or application of TREM2 antibodies such as Ab-T1, hT2AB could improve microglial cell function and reduce the level of neuroinflammation, which might be a potential treatment for AD. Probiotic therapy, fecal flora transplantation, antibiotic therapy, and dietary intervention could reshape the composition of the gut microbiota and alleviate neuroinflammation through the gut-brain axis. However, the drugs of sodium oligomannose remain controversial. Both exercise intervention and electromagnetic intervention had the potential to attenuate neuroinflammation, thereby delaying AD process. This article focuses on the role of drug therapy, gene therapy, stem cell therapy, gut microbiota therapy, exercise intervention, and brain stimulation in improving neuroinflammation in recent years, aiming to provide a novel insight for the treatment of AD by intervening neuroinflammation in the future.
2.Relationship between long non-coding RNA and osteoarthritis
Shanbin ZHENG ; Tianwei XIA ; Jiahao SUN ; Zhiyuan CHEN ; Xun CAO ; Chao ZHANG ; Jirong SHEN
Chinese Journal of Tissue Engineering Research 2025;29(11):2357-2367
BACKGROUND:As a common disease in middle-aged and elderly,osteoarthritis is difficult to cure,and the pathogenesis is not clear.Long non-coding RNA participates in the pathogenesis of osteoarthritis through many ways,such as regulating translation,promoting or inhibiting mRNA,and adsorbing miRNAs. OBJECTIVE:To review the types of common long non-coding RNA in osteoarthritis,and the influence of multiple long non-coding RNAs on the pathological factors related to osteoarthritis,to analyze the future application of long non-coding RNAs in osteoarthritis. METHODS:Literature retrieval was conducted in CNKI,WanFang Data,VIP database,PubMed,Web of Science and Sciencedirect databases,using the search terms of"osteoarthritis,degenerative joint disease,degenerative arthritis,OA,LncRNA,long non-coding RNA,long noncoding RNA,long intergenic non-coding RNA"in Chinese and English.All relevant literature published from 1976 and May 2024 was retrieved.After literature screening,induction,analysis and summary,93 articles were finally included for review. RESULTS AND CONCLUSION:This review collected 25 long non-coding RNAs that are well studied with osteoarthritis.Long non-coding RNAs,as a molecular sponge for miRNA,are competing endogenous RNAs to competitively adsorb miRNAs and then affect downstream targets.Long non-coding RNAs can regulate physiopathological processes such as chondrocyte apoptosis and proliferation,cartilage extracellular matrix degradation,and inflammatory responses.Long non-coding RNAs are expected to become a biomarker and potential therapeutic target for the clinical diagnosis and therapeutic prognosis of osteoarthritis,and it may become a new strategy for the clinical treatment of osteoarthritis in the future.
3.Geraniin attenuates isoproterenol-induced cardiac hypertrophy by inhibiting inflammation, oxidative stress and cellular apoptosis
Jiaqi DING ; Shenjie ZHANG ; Qi LI ; Boyu XIA ; Jingjing WU ; Xu LU ; Chao HUANG ; Xiaomei YUAN ; Qingsheng YOU
The Korean Journal of Physiology and Pharmacology 2025;29(3):307-319
Geraniin, a polyphenol derived from the fruit peel of Nephelium lappaceum L., has been shown to possess anti-inflammatory and antioxidant properties in the cardiovascular system. The present study explored whether geraniin could protect against an isoproterenol (ISO)-induced cardiac hypertrophy model. Mice in the ISO group received an intraperitoneal injection of ISO (5 mg/kg) once daily for 9 days, and the administration group were injected with ISO after 5 days of treatment with geraniin or spironolactone. Potential therapeutic effects and related mechanisms analysed by anatomical coefficients, histopathology, blood biochemical indices, reverse transcription-PCR and immunoblotting. Geraniin decreased the cardiac pathologic remodeling and myocardial fibrosis induced by ISO, as evidenced by the modifications to anatomical coefficients, as well as the reduction in collagen I/III á1mRNA and protein expression and cross-sectional area in hypertrophic cardiac tissue. In addition, geraniin treatment reduced ISO-induced increase in the mRNA and protein expression levels of interleukin (IL)-6, IL-1β and tumor necrosis factor-α, whereas ISO-induced IL-10 showed the opposite behaviour in hypertrophic cardiac tissue.Further analysis showed that geraniin partially reversed the ISO-induced increase in malondialdehyde and nitric oxide, and the ISO-induced decrease in glutathione, superoxide dismutase and glutathione. Furthermore, it suppressed the ISO-induced cellular apoptosis of hypertrophic cardiac tissue, as evidenced by the decrease in Bcell lymphoma-2 (Bcl-2)-associated X/caspase-3/caspase-9 expression, increase in Bcl-2 expression, and decrease in TdT-mediated dUTP nick-end labeling-positive cells.These findings suggest that geraniin can attenuate ISO-induced cardiac hypertrophy by inhibiting inflammation, oxidative stress and cellular apoptosis.
4.Efficacy and Safety of Automated Insulin Delivery Systems in Patients with Type 1 Diabetes Mellitus: A Systematic Review and Meta-Analysis
Wenqi FAN ; Chao DENG ; Ruoyao XU ; Zhenqi LIU ; Richard David LESLIE ; Zhiguang ZHOU ; Xia LI
Diabetes & Metabolism Journal 2025;49(2):235-251
Background:
Automated insulin delivery (AID) systems studies are upsurging, half of which were published in the last 5 years. We aimed to evaluate the efficacy and safety of AID systems in patients with type 1 diabetes mellitus (T1DM).
Methods:
We searched PubMed, Embase, Cochrane Library, Web of Science, and ClinicalTrials.gov until August 31, 2023. Randomized clinical trials that compared AID systems with other insulin-based treatments in patients with T1DM were considered eligible. Studies characteristics and glycemic metrics was extracted by three researchers independently.
Results:
Sixty-five trials (3,623 patients) were included. The percentage of time in range (TIR) was 11.74% (95% confidence interval [CI], 9.37 to 14.12; P<0.001) higher with AID systems compared with control treatments. Patients on AID systems had more pronounced improvement of time below range when diabetes duration was more than 20 years (–1.80% vs. –0.86%, P=0.031) and baseline glycosylated hemoglobin lower than 7.5% (–1.93% vs. –0.87%, P=0.033). Dual-hormone full closed-loop systems revealed a greater improvement in TIR compared with hybrid closed-loop systems (–19.64% vs. –10.87%). Notably, glycemia risk index (GRI) (–3.74; 95% CI, –6.34 to –1.14; P<0.01) was also improved with AID therapy.
Conclusion
AID systems showed significant advantages compared to other insulin-based treatments in improving glucose control represented by TIR and GRI in patients with T1DM, with more favorable effect in euglycemia by dual-hormone full closedloop systems as well as less hypoglycemia for patients who are within target for glycemic control and have longer diabetes duration.
6.Geraniin attenuates isoproterenol-induced cardiac hypertrophy by inhibiting inflammation, oxidative stress and cellular apoptosis
Jiaqi DING ; Shenjie ZHANG ; Qi LI ; Boyu XIA ; Jingjing WU ; Xu LU ; Chao HUANG ; Xiaomei YUAN ; Qingsheng YOU
The Korean Journal of Physiology and Pharmacology 2025;29(3):307-319
Geraniin, a polyphenol derived from the fruit peel of Nephelium lappaceum L., has been shown to possess anti-inflammatory and antioxidant properties in the cardiovascular system. The present study explored whether geraniin could protect against an isoproterenol (ISO)-induced cardiac hypertrophy model. Mice in the ISO group received an intraperitoneal injection of ISO (5 mg/kg) once daily for 9 days, and the administration group were injected with ISO after 5 days of treatment with geraniin or spironolactone. Potential therapeutic effects and related mechanisms analysed by anatomical coefficients, histopathology, blood biochemical indices, reverse transcription-PCR and immunoblotting. Geraniin decreased the cardiac pathologic remodeling and myocardial fibrosis induced by ISO, as evidenced by the modifications to anatomical coefficients, as well as the reduction in collagen I/III á1mRNA and protein expression and cross-sectional area in hypertrophic cardiac tissue. In addition, geraniin treatment reduced ISO-induced increase in the mRNA and protein expression levels of interleukin (IL)-6, IL-1β and tumor necrosis factor-α, whereas ISO-induced IL-10 showed the opposite behaviour in hypertrophic cardiac tissue.Further analysis showed that geraniin partially reversed the ISO-induced increase in malondialdehyde and nitric oxide, and the ISO-induced decrease in glutathione, superoxide dismutase and glutathione. Furthermore, it suppressed the ISO-induced cellular apoptosis of hypertrophic cardiac tissue, as evidenced by the decrease in Bcell lymphoma-2 (Bcl-2)-associated X/caspase-3/caspase-9 expression, increase in Bcl-2 expression, and decrease in TdT-mediated dUTP nick-end labeling-positive cells.These findings suggest that geraniin can attenuate ISO-induced cardiac hypertrophy by inhibiting inflammation, oxidative stress and cellular apoptosis.
7.Geraniin attenuates isoproterenol-induced cardiac hypertrophy by inhibiting inflammation, oxidative stress and cellular apoptosis
Jiaqi DING ; Shenjie ZHANG ; Qi LI ; Boyu XIA ; Jingjing WU ; Xu LU ; Chao HUANG ; Xiaomei YUAN ; Qingsheng YOU
The Korean Journal of Physiology and Pharmacology 2025;29(3):307-319
Geraniin, a polyphenol derived from the fruit peel of Nephelium lappaceum L., has been shown to possess anti-inflammatory and antioxidant properties in the cardiovascular system. The present study explored whether geraniin could protect against an isoproterenol (ISO)-induced cardiac hypertrophy model. Mice in the ISO group received an intraperitoneal injection of ISO (5 mg/kg) once daily for 9 days, and the administration group were injected with ISO after 5 days of treatment with geraniin or spironolactone. Potential therapeutic effects and related mechanisms analysed by anatomical coefficients, histopathology, blood biochemical indices, reverse transcription-PCR and immunoblotting. Geraniin decreased the cardiac pathologic remodeling and myocardial fibrosis induced by ISO, as evidenced by the modifications to anatomical coefficients, as well as the reduction in collagen I/III á1mRNA and protein expression and cross-sectional area in hypertrophic cardiac tissue. In addition, geraniin treatment reduced ISO-induced increase in the mRNA and protein expression levels of interleukin (IL)-6, IL-1β and tumor necrosis factor-α, whereas ISO-induced IL-10 showed the opposite behaviour in hypertrophic cardiac tissue.Further analysis showed that geraniin partially reversed the ISO-induced increase in malondialdehyde and nitric oxide, and the ISO-induced decrease in glutathione, superoxide dismutase and glutathione. Furthermore, it suppressed the ISO-induced cellular apoptosis of hypertrophic cardiac tissue, as evidenced by the decrease in Bcell lymphoma-2 (Bcl-2)-associated X/caspase-3/caspase-9 expression, increase in Bcl-2 expression, and decrease in TdT-mediated dUTP nick-end labeling-positive cells.These findings suggest that geraniin can attenuate ISO-induced cardiac hypertrophy by inhibiting inflammation, oxidative stress and cellular apoptosis.
8.Efficacy and Safety of Automated Insulin Delivery Systems in Patients with Type 1 Diabetes Mellitus: A Systematic Review and Meta-Analysis
Wenqi FAN ; Chao DENG ; Ruoyao XU ; Zhenqi LIU ; Richard David LESLIE ; Zhiguang ZHOU ; Xia LI
Diabetes & Metabolism Journal 2025;49(2):235-251
Background:
Automated insulin delivery (AID) systems studies are upsurging, half of which were published in the last 5 years. We aimed to evaluate the efficacy and safety of AID systems in patients with type 1 diabetes mellitus (T1DM).
Methods:
We searched PubMed, Embase, Cochrane Library, Web of Science, and ClinicalTrials.gov until August 31, 2023. Randomized clinical trials that compared AID systems with other insulin-based treatments in patients with T1DM were considered eligible. Studies characteristics and glycemic metrics was extracted by three researchers independently.
Results:
Sixty-five trials (3,623 patients) were included. The percentage of time in range (TIR) was 11.74% (95% confidence interval [CI], 9.37 to 14.12; P<0.001) higher with AID systems compared with control treatments. Patients on AID systems had more pronounced improvement of time below range when diabetes duration was more than 20 years (–1.80% vs. –0.86%, P=0.031) and baseline glycosylated hemoglobin lower than 7.5% (–1.93% vs. –0.87%, P=0.033). Dual-hormone full closed-loop systems revealed a greater improvement in TIR compared with hybrid closed-loop systems (–19.64% vs. –10.87%). Notably, glycemia risk index (GRI) (–3.74; 95% CI, –6.34 to –1.14; P<0.01) was also improved with AID therapy.
Conclusion
AID systems showed significant advantages compared to other insulin-based treatments in improving glucose control represented by TIR and GRI in patients with T1DM, with more favorable effect in euglycemia by dual-hormone full closedloop systems as well as less hypoglycemia for patients who are within target for glycemic control and have longer diabetes duration.
10.Efficacy and Safety of Automated Insulin Delivery Systems in Patients with Type 1 Diabetes Mellitus: A Systematic Review and Meta-Analysis
Wenqi FAN ; Chao DENG ; Ruoyao XU ; Zhenqi LIU ; Richard David LESLIE ; Zhiguang ZHOU ; Xia LI
Diabetes & Metabolism Journal 2025;49(2):235-251
Background:
Automated insulin delivery (AID) systems studies are upsurging, half of which were published in the last 5 years. We aimed to evaluate the efficacy and safety of AID systems in patients with type 1 diabetes mellitus (T1DM).
Methods:
We searched PubMed, Embase, Cochrane Library, Web of Science, and ClinicalTrials.gov until August 31, 2023. Randomized clinical trials that compared AID systems with other insulin-based treatments in patients with T1DM were considered eligible. Studies characteristics and glycemic metrics was extracted by three researchers independently.
Results:
Sixty-five trials (3,623 patients) were included. The percentage of time in range (TIR) was 11.74% (95% confidence interval [CI], 9.37 to 14.12; P<0.001) higher with AID systems compared with control treatments. Patients on AID systems had more pronounced improvement of time below range when diabetes duration was more than 20 years (–1.80% vs. –0.86%, P=0.031) and baseline glycosylated hemoglobin lower than 7.5% (–1.93% vs. –0.87%, P=0.033). Dual-hormone full closed-loop systems revealed a greater improvement in TIR compared with hybrid closed-loop systems (–19.64% vs. –10.87%). Notably, glycemia risk index (GRI) (–3.74; 95% CI, –6.34 to –1.14; P<0.01) was also improved with AID therapy.
Conclusion
AID systems showed significant advantages compared to other insulin-based treatments in improving glucose control represented by TIR and GRI in patients with T1DM, with more favorable effect in euglycemia by dual-hormone full closedloop systems as well as less hypoglycemia for patients who are within target for glycemic control and have longer diabetes duration.

Result Analysis
Print
Save
E-mail