1.Effects of subanesthetic dose of esketamine on postoperative anxiety and recovery in patients undergoing laparo-scopic cholecystectomy
Zhangzhen ZHONG ; Xian ZHENG ; Ting XU ; Jie WANG ; Hui CAO ; Xinggen ZHOU ; Hui LI ; Jiacheng ZHAO ; Hui LIU ; Chao ZHANG
China Pharmacy 2026;37(2):204-209
OBJECTIVE To investigate the effects of subanesthetic dose of esketamine on postoperative anxiety and recovery in patients undergoing laparoscopic cholecystectomy. METHODS A total of 200 patients scheduled for laparoscopic cholecystectomy at Suzhou Ninth Hospital Affiliated to Soochow University from January 2023 to December 2024 were randomly assigned to control group (n=100) and observation group (n=100). One minute before the initiation of anesthesia, patients in the control group received intravenous injections of Propofol emulsion injection, Sufentanil citrate injection, and Succinylcholine chloride injection. On this basis, patients in the observation group received an intravenous injection of Esketamine hydrochloride injection. The anxiety status of patients in both groups was compared, along with their general intraoperative conditions (including sufentanil dosage, duration of pneumoperitoneum, operative time, anesthesia time, and extubation time), postoperative recovery, incidence of adverse reactions, and the need for dezocine rescue analgesia. Heart rate and mean arterial pressure, entropy index (state entropy and response entropy), inflammatory marker levels [interleukin-6 (IL-6) and C-reactive protein (CRP)], numerical rating scale (NRS) for pain intensity were compared between the two groups at different time points. RESULTS No significant differences were found between the two groups in pneumoperitoneum duration, operative time, anesthesia time,extubation time, incidence of postoperative dry mouth, entropy index or length of stay in the post-anesthesia care unit (P>0.05). Compared with the control group, the observation group showed significantly lower postoperative STAI-S scores, reduced intraoperative sufentanil consumption, decreased incidence of postoperative nausea, vomiting, and shivering, the need for dezocine rescue analgesia, as well as lower plasma IL-6 and CRP levels at 24 h after surgery, and NRS (P<0.05). The heart rate and mean arterial pressure of patients in the observation group at the start of surgery, end of surgery, and during extubation were all significantly higher than those in the control group (P<0.05). CONCLUSIONS Subanesthetic dose of esketamine can effectively alleviate postoperative anxiety, reduce intraoperative opioid consumption, suppress postoperative inflammatory response, relieve postoperative pain, and promote recovery in patients undergoing laparoscopic cholecystectomy.
2.Connotation and Prevention Strategies of Traditional Chinese Medicine for Panvascular Diseases
Jie WANG ; Jun LI ; Yan DONG ; Cong CHEN ; Yongmei LIU ; Chao LIU ; Lanchun LIU ; Xuan SUN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):1-14
Panvascular disease, with vascular diseases as the common pathological feature, is mainly manifested as atherosclerosis. Panvascular disease mainly affects the important organs of the heart, brain, kidney, and limbs. It is one of the leading causes of death for Chinese residents at present. Previously, due to the narrow branches of disciplines, too much attention was paid to local lesions, resulting in the neglect of panvascular disease as a systemic one. The fact that panvascular disease has overall pathology and comprehensive and individualized treatment strategies, makes the disease highly compatible with the principles of holism concept and syndrome differentiation and treatment in traditional Chinese medicine (TCM). It is believed that blood stasis is the core pathogenesis of atherosclerosis and is involved in the whole process of atherosclerosis. The theories of ''blood vessel'', ''meridians'', ''visceral manifestation'', and ''organs-meridians'' in TCM are helpful to comprehensively understand the complexity of panvascular diseases. Moreover, those theories can provide systematic treatment strategies. The TCM syndromes of panvascular diseases evolve from ''phlegm, stasis, stagnation, and deficiency''. Panvascular arteriosclerosis is related to the syndrome of ''stasis and phlegm'', and the treatment mainly promotes blood circulation and removes phlegm. There are different specific drugs and mechanisms of action for coronary atherosclerosis, cerebral atherosclerosis, and renal artery atherosclerotic stenosis. Panvascular venous lesions are related to the syndrome of ''deficiency and stasis'' in TCM, and the TCM treatment mainly invigorates Qi and promotes blood circulation, which can inhibit venous thrombosis, improve venous ulcers, and resist venous endothelial damage. Panvascular microcirculatory lesions are inseparable from the ''stagnation and stasis'' in TCM, and the treatment mainly promotes Qi and dredges collaterals, which has a good effect on coronary microvascular lesions, diabetic microvascular lesions, pulmonary microvascular lesions, and pancreatic microvascular lesions. Panvascular lymphatic lesions are related to the syndrome of ''water and stasis'' in TCM. The treatment method focuses on promoting blood circulation and water excretion, which can promote lymphangiogenesis and enhance lymphatic reflux. In addition, the combination of TCM and modern technology, especially the application of artificial intelligence, can improve the efficiency of early identification and personalized treatment, resulting in early screening and comprehensive management of panvascular diseases. Therefore, TCM will play a vital role in the prevention and treatment of panvascular diseases.
3.Connotation and Prevention Strategies of Traditional Chinese Medicine for Panvascular Diseases
Jie WANG ; Jun LI ; Yan DONG ; Cong CHEN ; Yongmei LIU ; Chao LIU ; Lanchun LIU ; Xuan SUN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):1-14
Panvascular disease, with vascular diseases as the common pathological feature, is mainly manifested as atherosclerosis. Panvascular disease mainly affects the important organs of the heart, brain, kidney, and limbs. It is one of the leading causes of death for Chinese residents at present. Previously, due to the narrow branches of disciplines, too much attention was paid to local lesions, resulting in the neglect of panvascular disease as a systemic one. The fact that panvascular disease has overall pathology and comprehensive and individualized treatment strategies, makes the disease highly compatible with the principles of holism concept and syndrome differentiation and treatment in traditional Chinese medicine (TCM). It is believed that blood stasis is the core pathogenesis of atherosclerosis and is involved in the whole process of atherosclerosis. The theories of ''blood vessel'', ''meridians'', ''visceral manifestation'', and ''organs-meridians'' in TCM are helpful to comprehensively understand the complexity of panvascular diseases. Moreover, those theories can provide systematic treatment strategies. The TCM syndromes of panvascular diseases evolve from ''phlegm, stasis, stagnation, and deficiency''. Panvascular arteriosclerosis is related to the syndrome of ''stasis and phlegm'', and the treatment mainly promotes blood circulation and removes phlegm. There are different specific drugs and mechanisms of action for coronary atherosclerosis, cerebral atherosclerosis, and renal artery atherosclerotic stenosis. Panvascular venous lesions are related to the syndrome of ''deficiency and stasis'' in TCM, and the TCM treatment mainly invigorates Qi and promotes blood circulation, which can inhibit venous thrombosis, improve venous ulcers, and resist venous endothelial damage. Panvascular microcirculatory lesions are inseparable from the ''stagnation and stasis'' in TCM, and the treatment mainly promotes Qi and dredges collaterals, which has a good effect on coronary microvascular lesions, diabetic microvascular lesions, pulmonary microvascular lesions, and pancreatic microvascular lesions. Panvascular lymphatic lesions are related to the syndrome of ''water and stasis'' in TCM. The treatment method focuses on promoting blood circulation and water excretion, which can promote lymphangiogenesis and enhance lymphatic reflux. In addition, the combination of TCM and modern technology, especially the application of artificial intelligence, can improve the efficiency of early identification and personalized treatment, resulting in early screening and comprehensive management of panvascular diseases. Therefore, TCM will play a vital role in the prevention and treatment of panvascular diseases.
4.Distribution characteristics, source apportionment, and health risk assessment of metals and metalloids in PM2.5 in a southern city in 2019
Yaxin QU ; Suli HUANG ; Chao WANG ; Jie JIANG ; Jiajia JI ; Daokui FANG ; Shaohua XIE ; Xiaoheng LI ; Ning LIU
Journal of Environmental and Occupational Medicine 2025;42(2):196-204
Background Metals and metalloids in fine particulate matter (PM2.5) may cause damage to the respiratory and circulatory systems of the human body, and long-term exposure is prone to causing chronic poisoning, cancer, and other adverse effects. Objective To assess the distribution characteristics of metals and metalloids in outdoor PM2.5 in a southern city of China, conduct source apportionment, and evaluate the associated health risks, thereby providing theoretical support for further pollution control measures. Methods PM2.5 samples were collected in districts A, B, and C of a southern China city, and the concentrations of 17 metals and metalloids were detected by inductively coupled plasma-mass spectrometry (ICP-MS). Pollution sources were assessed through enrichment factor and principal components analysis, and the main pollution sources were quantified using absolute principal component scores-multivariate linear regression (APCS-MLR). Health risks were evaluated based on the Technical guide for environmental health risk assessment of chemical exposure (WS/T777—2021). Results The ambient air PM2.5 concentrations in the city were higher in winter and spring, and lower in summer and autumn. The annual average concentrations of ambient PM2.5 in districts A, B, and C were 36.7, 31.9, and 24.4 μg·m−3, respectively. The ambient PM2.5 levels in districts B and C were below the second-grade limit set by the Ambient air quality standards (GB 3095—2012). The enrichment factors of cadmium (Cd), aluminum (Al), and antimony (Sb) were greater than 10, those of copper (Cu), lead (Pb), arsenic (As), nickel (Ni), mercury (Hg), and molybdenum (Mo) fell between 1 and 10, and those of manganese (Mn), vanadium (V), chromium (Cr), cobalt (Co), barium (Ba), beryllium (Be), and uranium (U) were below or equal to 1. The comprehensive evaluation of source analysis showed that the main pollution sources in districts A and C and the whole city were coal-burning. In district B, the main pollution source was also coal combustion, followed by industrial process sources and dust sources. The carcinogenic risks of As and Cr were between 1×10−6 and 1×10−4. However, the hazard quotients for 15 metals and metalloids in terms of non-carcinogenic risk were below 1. Conclusion Cr and As in the atmospheric PM2.5 of the city present a certain risk of cancer and should be paid attention to. In addition, preventive control measures should be taken against relevant pollution sources such as industrial emission, dust, and coal burning.
5.Exercise Regulates Structural Plasticity and Neurogenesis of Hippocampal Neurons and Improves Memory Impairment in High-fat Diet-induced Obese Mice
Meng-Si YAN ; Lin-Jie SHU ; Chao-Ge WANG ; Ran CHENG ; Lian-Wei MU ; Jing-Wen LIAO
Progress in Biochemistry and Biophysics 2025;52(4):995-1007
ObjectiveObesity has been identified as one of the most important risk factors for cognitive dysfunction. Physical exercise can ameliorate learning and memory deficits by reversing synaptic plasticity in the hippocampus and cortex in diseases such as Alzheimer’s disease. In this study, we aimed to determine whether 8 weeks of treadmill exercise could alleviate hippocampus-dependent memory impairment in high-fat diet-induced obese mice and investigate the potential mechanisms involved. MethodsA total of sixty 6-week-old male C57BL/6 mice, weighing between 20-30 g, were randomly assigned to 3 distinct groups, each consisting of 20 mice. The groups were designated as follows: control (CON), high-fat diet (HFD), and high-fat diet with exercise (HFD-Ex). Prior to the initiation of the treadmill exercise protocol, the HFD and HFD-Ex groups were fed a high-fat diet (60% fat by kcal) for 20 weeks. The mice in the HFD-Ex group underwent treadmill exercise at a speed of 8 m/min for the first 10 min, followed by 12 m/min for the subsequent 50 min, totally 60 min of exercise at a 0° slope, 5 d per week, for 8 weeks. We employed Y-maze and novel object recognition tests to assess hippocampus-dependent memory and utilized immunofluorescence, Western blot, Golgi staining, and ELISA to analyze axon length, dendritic complexity, number of spines, the expression of c-fos, doublecortin (DCX), postsynaptic density-95 (PSD95), synaptophysin (Syn), interleukin-1β (IL-1β), and the number of major histocompatibility complex II (MHC-II) positive cells. ResultsMice with HFD-induced obesity exhibit hippocampus-dependent memory impairment, and treadmill exercise can prevent memory decline in these mice. The expression of DCX was significantly decreased in the HFD-induced obese mice compared to the control group (P<0.001). Treadmill exercise increased the expression of c-fos (P<0.001) and DCX (P=0.001) in the hippocampus of the HFD-induced obese mice. The axon length (P<0.001), dendritic complexity (P<0.001), the number of spines (P<0.001) and the expression of PSD95 (P<0.001) in the hippocampus were significantly decreased in the HFD-induced obese mice compared to the control group. Treadmill exercise increased the axon length (P=0.002), dendritic complexity(P<0.001), the number of spines (P<0.001) and the expression of PSD95 (P=0.001) of the hippocampus in the HFD-induced obese mice. Our study found a significant increase in MHC-II positive cells (P<0.001) and the concentration of IL-1β (P<0.001) in the hippocampus of HFD-induced obese mice compared to the control group. Treadmill exercise was found to reduce the number of MHC-II positive cells (P<0.001) and the concentration of IL-1β (P<0.001) in the hippocampus of obese mice induced by a HFD. ConclusionTreadmill exercise led to enhanced neurogenesis and neuroplasticity by increasing the axon length, dendritic complexity, dendritic spine numbers, and the expression of PSD95 and DCX, decreasing the number of MHC-II positive cells and neuroinflammation in HFD-induced obese mice. Therefore, we speculate that exercise may serve as a non-pharmacologic method that protects against HFD-induced hippocampus-dependent memory dysfunction by enhancing neuroplasticity and neurogenesis in the hippocampus of obese mice.
6.Effects and mechanism of asperuloside on the pyroptosis of intestinal epithelial cells in rats with ulcerative colitis
Chao XU ; Xiaoping TAN ; Jie LI ; Minghua AI ; Yueyue LU ; Chaoyong LIU
China Pharmacy 2025;36(2):166-171
OBJECTIVE To investigate the effects and mechanism of asperuloside (Asp) on the pyroptosis of intestinal epithelial cells in rats with ulcerative colitis (UC). METHODS The male SD rats were randomly divided into Control group, model group (UC group), ASP low-dose and high-dose groups [Asp-L, Asp-H groups, Asp 35, 70 mg/(kg·d)], ASP high-dose group+AMPK inhibitor Compound C group [Asp-H+Compound C group, Asp 70 mg/(kg·d)+Compound C 0.2 mg/(kg·d)], with 12 rats in each group. Except for Control group, the other groups were injected with 50% ethanol (0.25 mL)+5% 2,4, 6- trinitrobenzene sulfonic acid solution (2 mL/kg) into the intestinal cavity to construct UC model. After modeling, the rats in each drug group were given corresponding drug solution by gavage or (and) tail vein injection, once a day, for 14 consecutive days. After the last administration, the weight of rats in each group was measured, and the length of their colons was measured; disease activity index (DAI) score and colonic mucosal damage index (CMDI) score were performed, and the serum levels of inflammatory factors (interleukin-18, -1β, -6) were detected. The pathological changes of the colon tissue were observed. The expressions of pyroptosis-related proteins [caspase-1, gasdermin D (GSDMD)] in colon tissue, and pathway-related proteins such as adenosine monophosphate-activated protein kinase (AMPK), thioredoxin-interacting protein (TXNIP), NOD-like receptor protein 3 (NLRP3) and apoptosis-associated speck-like protein containing a CARD (ASC) were all detected. RESULTS Compared with Control group, the colon tissue structure of rats in UC group was damaged, with obvious infiltration of inflammatory cells and edema. Their body weight, colon length and phosphorylation level of AMPK protein were significantly reduced or shortened; DAI and CMDI scores, serum levels of inflammatory factors, and the protein expressions of caspase-1, GSDMD, TXNIP, NLRP3 and ASC in colon tissue were increased or upregulated significantly (P<0.05). Compared with UC group, the pathological damage of colon tissue in rats was relieved in Asp-L and Asp-H groups, and all quantitative indicators were significantly improved (P<0.05); the improvement effect of Asp-H group was more significant (P<0.05). Compound C could significantly reverse the improvement effect of high-dose of Asp on the above indicators in UC rats (P<0.05). CONCLUSIONS Asp can improve inflammatory damage in colon tissue and inhibit pyroptosis of intestinal epithelial cells in UC rats, which is associated with the activation of AMPK and inhibition of TXNIP/NLRP3 signaling pathway.
7.Effects and mechanism of asperuloside on the pyroptosis of intestinal epithelial cells in rats with ulcerative colitis
Chao XU ; Xiaoping TAN ; Jie LI ; Minghua AI ; Yueyue LU ; Chaoyong LIU
China Pharmacy 2025;36(2):166-171
OBJECTIVE To investigate the effects and mechanism of asperuloside (Asp) on the pyroptosis of intestinal epithelial cells in rats with ulcerative colitis (UC). METHODS The male SD rats were randomly divided into Control group, model group (UC group), ASP low-dose and high-dose groups [Asp-L, Asp-H groups, Asp 35, 70 mg/(kg·d)], ASP high-dose group+AMPK inhibitor Compound C group [Asp-H+Compound C group, Asp 70 mg/(kg·d)+Compound C 0.2 mg/(kg·d)], with 12 rats in each group. Except for Control group, the other groups were injected with 50% ethanol (0.25 mL)+5% 2,4, 6- trinitrobenzene sulfonic acid solution (2 mL/kg) into the intestinal cavity to construct UC model. After modeling, the rats in each drug group were given corresponding drug solution by gavage or (and) tail vein injection, once a day, for 14 consecutive days. After the last administration, the weight of rats in each group was measured, and the length of their colons was measured; disease activity index (DAI) score and colonic mucosal damage index (CMDI) score were performed, and the serum levels of inflammatory factors (interleukin-18, -1β, -6) were detected. The pathological changes of the colon tissue were observed. The expressions of pyroptosis-related proteins [caspase-1, gasdermin D (GSDMD)] in colon tissue, and pathway-related proteins such as adenosine monophosphate-activated protein kinase (AMPK), thioredoxin-interacting protein (TXNIP), NOD-like receptor protein 3 (NLRP3) and apoptosis-associated speck-like protein containing a CARD (ASC) were all detected. RESULTS Compared with Control group, the colon tissue structure of rats in UC group was damaged, with obvious infiltration of inflammatory cells and edema. Their body weight, colon length and phosphorylation level of AMPK protein were significantly reduced or shortened; DAI and CMDI scores, serum levels of inflammatory factors, and the protein expressions of caspase-1, GSDMD, TXNIP, NLRP3 and ASC in colon tissue were increased or upregulated significantly (P<0.05). Compared with UC group, the pathological damage of colon tissue in rats was relieved in Asp-L and Asp-H groups, and all quantitative indicators were significantly improved (P<0.05); the improvement effect of Asp-H group was more significant (P<0.05). Compound C could significantly reverse the improvement effect of high-dose of Asp on the above indicators in UC rats (P<0.05). CONCLUSIONS Asp can improve inflammatory damage in colon tissue and inhibit pyroptosis of intestinal epithelial cells in UC rats, which is associated with the activation of AMPK and inhibition of TXNIP/NLRP3 signaling pathway.
8.The mechanism of epigallocatechin gallate enhancing the sensitivity of hepatocellular carcinoma cells to lenva-tinib
Chuanfang SONG ; Jiang AI ; Chao WEN ; Jie ZHANG ; Jianghe CUI
China Pharmacy 2025;36(18):2256-2261
OBJECTIVE To investigate the potential mechanism of epigallocatechin gallate (EGCG) enhancing the sensitivity of hepatocellular carcinoma (HCC) cells to lenvatinib based on the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway. METHODS Five human HCC cell lines (HepG2, Huh-7, SMMC-7721, SNU-368 and SNU-739) were used to evaluate the effects of lenvatinib alone and in combination with EGCG on survival rates, clone number, proliferation rate, invasion number and the expressions of mRNAs and proteins related to the PI3K/Akt signaling pathway. The PI3K activator insulin-like growth factor-1 (IGF-1) was introduced to investigate the effect of activating the PI3K/Akt signaling pathway on the sensitization effect of EGCG. RESULTS Compared with the control group, lenvatinib (10 μmol/L) and different concentrations of EGCG+ lenvatinib (1, 5 and 10 μg/mL EGCG+10 μmol/L lenvatinib) significantly reduced the survival rates and clone numbers of all five HCC cell lines in a dose-dependent manner (P<0.05). Lenvatinib (10 μmol/L) and EGCG+lenvatinib (10 μg/mL EGCG+10 μmol/L lenvatinib) also markedly inhibited the proliferation rate and invasion numbers of these cells, and decreased the mRNA expressions of PI3K, Akt, mammalian target of rapamycin (mTOR), P70S6K and 4EBP, and the phosphorylation levels of PI3K and Akt, as well as the protein expressions of mTOR and B cell lymphoma-2 (Bcl-2) in HepG2 cells or all five HCC cells; conversely, the mRNA and protein expressions of phosphatase and tensin homologue deleted on chromosome 10(PTEN), and the protein expressions of caspase-3 and cleaved caspase-3 were significantly upregulated, with more pronounced effects observed in the EGCG+lenvatinib group than in the lenvatinib group (P<0.05). Compared with the lenvatinib group and the EGCG+lenvatinib group, the clone number, proliferation rate and invasion number of HepG2 cells in the EGCG+lenvatinib+IGF-1 group (10 μg/mL EGCG+10 μmol/L lenvatinib+50 ng/mL IGF-1) were significantly increased (P<0.05). CONCLUSIONS EGCG can enhance the sensitivity of HCC cells to lenvatinib, and its underlying mechanism may be related to the inhibition of the activation of PI3K/Akt signaling pathway activation.
9.Effect of lncRNA MANCR on Proliferation, Migration, and Epithelial Mesenchymal Transition of Gastric Cancer Cells by Regulating miR-150-5p/GPNMB Axis
Chao LI ; Shihui WANG ; Jie LIN ; Fanke WANG ; Rui ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(17):135-142
ObjectiveTo investigate the effects of mitotically-associated long non-coding RNA (lncRNA MANCR) on the proliferation,migration, and epithelial mesenchymal transition (EMT) of gastric cancer (GC) cells by regulating the microRNA-50-5p (miR-150-5p)/non-metastatic melanoprotein B (GPNMB) axis. MethodsThe mRNA expressions of lncRNA MANCR,miR-150-5p, and GPNMB in 42 cases of GC tissue and adjacent tissue resected during surgery in the First Hospital of Hebei Medical University from June 2022 to September 2023 were detected by Real-time PCR. Human gastric mucosal epithelial cells GES-1 and human GC cells BGC-823 were cultured in vitro, and their lncRNA MANCR expression was detected. BGC-823 cells were randomly separated into control group (routine culture),sh-NC group (with sh-NC transfected),sh-MANCR group (with sh-MANCR transfected),sh-MANCR + anti-NC group (with sh-MANCR and anti-NC both transfected),and sh-MANCR + anti-miR-150-5p group (with sh-MANCR and anti-miR-150-5p both transfected). The mRNA expressions of lncRNA MANCR,miR-150-5p, and GPNMB in the BGC-823 cells of all groups were analyzed. EdU staining was used to detect the proliferation of BGC-823 cells. Transwell assay was used to detect the migration and invasion of BGC-823 cells. The expressions of EMT-related proteins E-cadherin,N-cadherin,Vimentin, and GPNMB were detected by Western blot. The interactions between lncRNA MANCR and miR-150-5p and between miR-150-5p and GPNMB were analyzed by dual luciferase reporter assay. ResultsThe mRNA expressions of lncRNA MANCR and GPNMB in GC tissue were higher than those in adjacent tissue,and the expression of miR-150-5p was lower than that in adjacent tissue (P<0.05). Compared with that in GES-1,lncRNA MANCR expression in BGC-823 cells was increased (P<0.05). Compared with those in the sh-NC group and control group,the EdU-positive cell rate,migration number,invasion number,the mRNA expressions of lncRNA MANCR and GPNMB, and the expressions of protein,N-cadherin protein, and Vimentin protein in the BGC-823 cells in the sh-MANCR group were lower ,and the protein expressions of miR-150-5p and E-cadherin were higher (P<0.05). Compared with those in the sh-MANCR group and the sh-MANCR + anti-NC group,the protein expressions of miR-150-5p and E-cadherin in the sh-MANCR + anti-miR-150-5p group were decreased. The EdU-positive cell rate,migration number,invasion number,mRNA expressions of GPNMB, and expressions of protein,N-cadherin protein, and Vimentin protein were increased (P<0.05). lncRNA MANCR could target the negative regulation of miR-150-5p,and miR-150-5p could target the negative regulation of GPNMB. ConclusionKnockout of lncRNA MANCR can inhibit the proliferation,migration, and EMT of GC cells by regulating the miR-150-5p/GPNMB axis.
10.Effect of lncRNA MANCR on Proliferation, Migration, and Epithelial Mesenchymal Transition of Gastric Cancer Cells by Regulating miR-150-5p/GPNMB Axis
Chao LI ; Shihui WANG ; Jie LIN ; Fanke WANG ; Rui ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(17):135-142
ObjectiveTo investigate the effects of mitotically-associated long non-coding RNA (lncRNA MANCR) on the proliferation,migration, and epithelial mesenchymal transition (EMT) of gastric cancer (GC) cells by regulating the microRNA-50-5p (miR-150-5p)/non-metastatic melanoprotein B (GPNMB) axis. MethodsThe mRNA expressions of lncRNA MANCR,miR-150-5p, and GPNMB in 42 cases of GC tissue and adjacent tissue resected during surgery in the First Hospital of Hebei Medical University from June 2022 to September 2023 were detected by Real-time PCR. Human gastric mucosal epithelial cells GES-1 and human GC cells BGC-823 were cultured in vitro, and their lncRNA MANCR expression was detected. BGC-823 cells were randomly separated into control group (routine culture),sh-NC group (with sh-NC transfected),sh-MANCR group (with sh-MANCR transfected),sh-MANCR + anti-NC group (with sh-MANCR and anti-NC both transfected),and sh-MANCR + anti-miR-150-5p group (with sh-MANCR and anti-miR-150-5p both transfected). The mRNA expressions of lncRNA MANCR,miR-150-5p, and GPNMB in the BGC-823 cells of all groups were analyzed. EdU staining was used to detect the proliferation of BGC-823 cells. Transwell assay was used to detect the migration and invasion of BGC-823 cells. The expressions of EMT-related proteins E-cadherin,N-cadherin,Vimentin, and GPNMB were detected by Western blot. The interactions between lncRNA MANCR and miR-150-5p and between miR-150-5p and GPNMB were analyzed by dual luciferase reporter assay. ResultsThe mRNA expressions of lncRNA MANCR and GPNMB in GC tissue were higher than those in adjacent tissue,and the expression of miR-150-5p was lower than that in adjacent tissue (P<0.05). Compared with that in GES-1,lncRNA MANCR expression in BGC-823 cells was increased (P<0.05). Compared with those in the sh-NC group and control group,the EdU-positive cell rate,migration number,invasion number,the mRNA expressions of lncRNA MANCR and GPNMB, and the expressions of protein,N-cadherin protein, and Vimentin protein in the BGC-823 cells in the sh-MANCR group were lower ,and the protein expressions of miR-150-5p and E-cadherin were higher (P<0.05). Compared with those in the sh-MANCR group and the sh-MANCR + anti-NC group,the protein expressions of miR-150-5p and E-cadherin in the sh-MANCR + anti-miR-150-5p group were decreased. The EdU-positive cell rate,migration number,invasion number,mRNA expressions of GPNMB, and expressions of protein,N-cadherin protein, and Vimentin protein were increased (P<0.05). lncRNA MANCR could target the negative regulation of miR-150-5p,and miR-150-5p could target the negative regulation of GPNMB. ConclusionKnockout of lncRNA MANCR can inhibit the proliferation,migration, and EMT of GC cells by regulating the miR-150-5p/GPNMB axis.

Result Analysis
Print
Save
E-mail