1.Biomechanical Evaluation of 2 Endoscopic Spine Surgery Methods for Treating Lumbar Disc Herniation: A Finite Element Study
Yang ZOU ; Shuo JI ; Hui Wen YANG ; Tao MA ; Yue Kun FANG ; Zhi Cheng WANG ; Miao Miao LIU ; Ping Hui ZHOU ; Zheng Qi BAO ; Chang Chun ZHANG ; Yu Chen YE
Neurospine 2024;21(1):273-285
Objective:
This study aimed to evaluate the effects of 2 endoscopic spine surgeries on the biomechanical properties of normal and osteoporotic spines.
Methods:
Based on computed tomography images of a healthy adult volunteer, 6 finite element models were created. After validating the normal intact model, a concentrated force of 400 N and a moment of 7.5 Nm were exerted on the upper surface of L3 to simulate 6 physiological activities of the spine. Five types of indices were used to assess the biomechanical properties of the 6 models, range of motion (ROM), maximum displacement value, intervertebral disc stress, maximum stress value, and articular protrusion stress, and by combining them with finite element stress cloud.
Results:
In normal and osteoporotic spines, there was no meaningful change in ROM or disc stress in the 2 surgical models for the 6 motion states. Model N1 (osteoporotic percutaneous transforaminal endoscopic discectomy model) showed a decrease in maximum displacement value of 20.28% in right lateral bending. Model M2 (unilateral biportal endoscopic model) increased maximum displacement values of 16.88% and 17.82% during left and right lateral bending, respectively. The maximum stress value of L4–5 increased by 11.72% for model M2 during left rotation. In addition, using the same surgical approach, ROM, maximum displacement values, disc stress, and maximum stress values were more significant in the osteoporotic model than in the normal model.
Conclusion
In both normal and osteoporotic spines, both surgical approaches were less disruptive to the physiologic structure of the spine. Furthermore, using the same endoscopic spine surgery, normal spine biomechanical properties are superior to osteoporotic spines.
2.Biomechanical Evaluation of 2 Endoscopic Spine Surgery Methods for Treating Lumbar Disc Herniation: A Finite Element Study
Yang ZOU ; Shuo JI ; Hui Wen YANG ; Tao MA ; Yue Kun FANG ; Zhi Cheng WANG ; Miao Miao LIU ; Ping Hui ZHOU ; Zheng Qi BAO ; Chang Chun ZHANG ; Yu Chen YE
Neurospine 2024;21(1):273-285
Objective:
This study aimed to evaluate the effects of 2 endoscopic spine surgeries on the biomechanical properties of normal and osteoporotic spines.
Methods:
Based on computed tomography images of a healthy adult volunteer, 6 finite element models were created. After validating the normal intact model, a concentrated force of 400 N and a moment of 7.5 Nm were exerted on the upper surface of L3 to simulate 6 physiological activities of the spine. Five types of indices were used to assess the biomechanical properties of the 6 models, range of motion (ROM), maximum displacement value, intervertebral disc stress, maximum stress value, and articular protrusion stress, and by combining them with finite element stress cloud.
Results:
In normal and osteoporotic spines, there was no meaningful change in ROM or disc stress in the 2 surgical models for the 6 motion states. Model N1 (osteoporotic percutaneous transforaminal endoscopic discectomy model) showed a decrease in maximum displacement value of 20.28% in right lateral bending. Model M2 (unilateral biportal endoscopic model) increased maximum displacement values of 16.88% and 17.82% during left and right lateral bending, respectively. The maximum stress value of L4–5 increased by 11.72% for model M2 during left rotation. In addition, using the same surgical approach, ROM, maximum displacement values, disc stress, and maximum stress values were more significant in the osteoporotic model than in the normal model.
Conclusion
In both normal and osteoporotic spines, both surgical approaches were less disruptive to the physiologic structure of the spine. Furthermore, using the same endoscopic spine surgery, normal spine biomechanical properties are superior to osteoporotic spines.
3.Biomechanical Evaluation of 2 Endoscopic Spine Surgery Methods for Treating Lumbar Disc Herniation: A Finite Element Study
Yang ZOU ; Shuo JI ; Hui Wen YANG ; Tao MA ; Yue Kun FANG ; Zhi Cheng WANG ; Miao Miao LIU ; Ping Hui ZHOU ; Zheng Qi BAO ; Chang Chun ZHANG ; Yu Chen YE
Neurospine 2024;21(1):273-285
Objective:
This study aimed to evaluate the effects of 2 endoscopic spine surgeries on the biomechanical properties of normal and osteoporotic spines.
Methods:
Based on computed tomography images of a healthy adult volunteer, 6 finite element models were created. After validating the normal intact model, a concentrated force of 400 N and a moment of 7.5 Nm were exerted on the upper surface of L3 to simulate 6 physiological activities of the spine. Five types of indices were used to assess the biomechanical properties of the 6 models, range of motion (ROM), maximum displacement value, intervertebral disc stress, maximum stress value, and articular protrusion stress, and by combining them with finite element stress cloud.
Results:
In normal and osteoporotic spines, there was no meaningful change in ROM or disc stress in the 2 surgical models for the 6 motion states. Model N1 (osteoporotic percutaneous transforaminal endoscopic discectomy model) showed a decrease in maximum displacement value of 20.28% in right lateral bending. Model M2 (unilateral biportal endoscopic model) increased maximum displacement values of 16.88% and 17.82% during left and right lateral bending, respectively. The maximum stress value of L4–5 increased by 11.72% for model M2 during left rotation. In addition, using the same surgical approach, ROM, maximum displacement values, disc stress, and maximum stress values were more significant in the osteoporotic model than in the normal model.
Conclusion
In both normal and osteoporotic spines, both surgical approaches were less disruptive to the physiologic structure of the spine. Furthermore, using the same endoscopic spine surgery, normal spine biomechanical properties are superior to osteoporotic spines.
4.Biomechanical Evaluation of 2 Endoscopic Spine Surgery Methods for Treating Lumbar Disc Herniation: A Finite Element Study
Yang ZOU ; Shuo JI ; Hui Wen YANG ; Tao MA ; Yue Kun FANG ; Zhi Cheng WANG ; Miao Miao LIU ; Ping Hui ZHOU ; Zheng Qi BAO ; Chang Chun ZHANG ; Yu Chen YE
Neurospine 2024;21(1):273-285
Objective:
This study aimed to evaluate the effects of 2 endoscopic spine surgeries on the biomechanical properties of normal and osteoporotic spines.
Methods:
Based on computed tomography images of a healthy adult volunteer, 6 finite element models were created. After validating the normal intact model, a concentrated force of 400 N and a moment of 7.5 Nm were exerted on the upper surface of L3 to simulate 6 physiological activities of the spine. Five types of indices were used to assess the biomechanical properties of the 6 models, range of motion (ROM), maximum displacement value, intervertebral disc stress, maximum stress value, and articular protrusion stress, and by combining them with finite element stress cloud.
Results:
In normal and osteoporotic spines, there was no meaningful change in ROM or disc stress in the 2 surgical models for the 6 motion states. Model N1 (osteoporotic percutaneous transforaminal endoscopic discectomy model) showed a decrease in maximum displacement value of 20.28% in right lateral bending. Model M2 (unilateral biportal endoscopic model) increased maximum displacement values of 16.88% and 17.82% during left and right lateral bending, respectively. The maximum stress value of L4–5 increased by 11.72% for model M2 during left rotation. In addition, using the same surgical approach, ROM, maximum displacement values, disc stress, and maximum stress values were more significant in the osteoporotic model than in the normal model.
Conclusion
In both normal and osteoporotic spines, both surgical approaches were less disruptive to the physiologic structure of the spine. Furthermore, using the same endoscopic spine surgery, normal spine biomechanical properties are superior to osteoporotic spines.
5.Biomechanical Evaluation of 2 Endoscopic Spine Surgery Methods for Treating Lumbar Disc Herniation: A Finite Element Study
Yang ZOU ; Shuo JI ; Hui Wen YANG ; Tao MA ; Yue Kun FANG ; Zhi Cheng WANG ; Miao Miao LIU ; Ping Hui ZHOU ; Zheng Qi BAO ; Chang Chun ZHANG ; Yu Chen YE
Neurospine 2024;21(1):273-285
Objective:
This study aimed to evaluate the effects of 2 endoscopic spine surgeries on the biomechanical properties of normal and osteoporotic spines.
Methods:
Based on computed tomography images of a healthy adult volunteer, 6 finite element models were created. After validating the normal intact model, a concentrated force of 400 N and a moment of 7.5 Nm were exerted on the upper surface of L3 to simulate 6 physiological activities of the spine. Five types of indices were used to assess the biomechanical properties of the 6 models, range of motion (ROM), maximum displacement value, intervertebral disc stress, maximum stress value, and articular protrusion stress, and by combining them with finite element stress cloud.
Results:
In normal and osteoporotic spines, there was no meaningful change in ROM or disc stress in the 2 surgical models for the 6 motion states. Model N1 (osteoporotic percutaneous transforaminal endoscopic discectomy model) showed a decrease in maximum displacement value of 20.28% in right lateral bending. Model M2 (unilateral biportal endoscopic model) increased maximum displacement values of 16.88% and 17.82% during left and right lateral bending, respectively. The maximum stress value of L4–5 increased by 11.72% for model M2 during left rotation. In addition, using the same surgical approach, ROM, maximum displacement values, disc stress, and maximum stress values were more significant in the osteoporotic model than in the normal model.
Conclusion
In both normal and osteoporotic spines, both surgical approaches were less disruptive to the physiologic structure of the spine. Furthermore, using the same endoscopic spine surgery, normal spine biomechanical properties are superior to osteoporotic spines.
6.Clinical features and prognosis of juvenile myelomonocytic leukemia: an analysis of 63 cases.
Wen-Yu YANG ; Li-Peng LIU ; Fang LIU ; Ben-Quan QI ; Li-Xian CHANG ; Li ZHANG ; Xiao-Juan CHEN ; Yao ZOU ; Yu-Mei CHEN ; Ye GUO ; Xiao-Fan ZHU
Chinese Journal of Contemporary Pediatrics 2023;25(3):265-271
OBJECTIVES:
To investigate the clinical features of juvenile myelomonocytic leukemia (JMML) and their association with prognosis.
METHODS:
Clinical and prognosis data were collected from the children with JMML who were admitted from January 2008 to December 2016, and the influencing factors for prognosis were analyzed.
RESULTS:
A total of 63 children with JMML were included, with a median age of onset of 25 months and a male/female ratio of 3.2∶1. JMML genetic testing was performed for 54 children, and PTPN11 mutation was the most common mutation and was observed in 23 children (43%), among whom 19 had PTPN11 mutation alone and 4 had compound PTPN11 mutation, followed by NRAS mutation observed in 14 children (26%), among whom 12 had NRAS mutation alone and 2 had compound NRAS mutation. The 5-year overall survival (OS) rate was only 22%±10% in these children with JMML. Of the 63 children, 13 (21%) underwent hematopoietic stem cell transplantation (HSCT). The HSCT group had a significantly higher 5-year OS rate than the non-HSCT group (46%±14% vs 29%±7%, P<0.05). There was no significant difference in the 5-year OS rate between the children without PTPN11 gene mutation and those with PTPN11 gene mutation (30%±14% vs 27%±10%, P>0.05). The Cox proportional-hazards regression model analysis showed that platelet count <40×109/L at diagnosis was an influencing factor for 5-year OS rate in children with JMML (P<0.05).
CONCLUSIONS
The PTPN11 gene was the most common mutant gene in JMML. Platelet count at diagnosis is associated with the prognosis in children with JMML. HSCT can improve the prognosis of children with JMML.
Child
;
Humans
;
Male
;
Female
;
Child, Preschool
;
Leukemia, Myelomonocytic, Juvenile/therapy*
;
Prognosis
;
Genetic Testing
;
Mutation
;
Hematopoietic Stem Cell Transplantation
7.Analysis on the secondary attack rates of SARS-CoV-2 Omicron variant and the associated factors.
Qing Xiang SHANG ; Ke XU ; Qi Gang DAI ; Hao Di HUANG ; Jian Li HU ; Xin ZOU ; Li Ling CHEN ; Ye WEI ; Hai Peng LI ; Qian ZHEN ; Wei CAI ; Yin WANG ; Chang jun BAO
Chinese Journal of Preventive Medicine 2023;57(10):1550-1557
Objective: To evaluate the secondary attack rates of the SARS-CoV-2 Omicron variant and the associated factors. Methods: A total of 328 primary cases and 40 146 close contacts of the SARS-CoV-2 Omicron variant routinely detected in local areas of Jiangsu Province from February to April 2022 were selected in this study, and those with positive nucleic acid test results during 7 days of centralized isolation medical observation were defined as secondary cases. The demographic information and clinical characteristics were collected, and the secondary attack rate (SAR) and the associated factors were analyzed by using a multivariate logistic regression model. Results: A total of 1 285 secondary cases of close contacts were reported from 328 primary cases, with a SAR of 3.2% (95%CI: 3.0%-3.4%). Among the 328 primary cases, males accounted for 61.9% (203 cases), with the median age (Q1, Q3) of 38.5 (27, 51) years old. Among the 1 285 secondary cases, males accounted for 59.1% (759 cases), with the median age (Q1, Q3) of 34 (17, 52) years old. The multivariate logistic regression model showed that the higher SAR was observed in the primary male cases (OR=1.632, 95%CI: 1.418-1.877), younger than 20 years old (OR=1.766, 95%CI: 1.506-2.072),≥60 years old (OR=1.869, 95%CI: 1.476-2.365), infected with the BA.2 strain branch (OR=2.906, 95%CI: 2.388-3.537), the confirmed common cases (OR=2.572, 95%CI: 2.036-3.249), and confirmed mild cases (OR=1.717, 95%CI: 1.486-1.985). Meanwhile, the higher SAR was observed in the close contacts younger than 20 years old (OR=2.604, 95%CI: 2.250-3.015),≥60 years old (OR=1.287, 95%CI: 1.052-1.573) and exposure for co-residence (OR=27.854, 95%CI: 23.470-33.057). Conclusion: The sex and age of the primary case of the Omicron variant, the branch of the infected strain, case severity of the primary case, as well as the age and contact mode of close contacts are the associated factors of SAR.
Humans
;
Male
;
Middle Aged
;
Young Adult
;
Adult
;
COVID-19/epidemiology*
;
Incidence
;
SARS-CoV-2
;
Logistic Models
8.Analysis on the secondary attack rates of SARS-CoV-2 Omicron variant and the associated factors.
Qing Xiang SHANG ; Ke XU ; Qi Gang DAI ; Hao Di HUANG ; Jian Li HU ; Xin ZOU ; Li Ling CHEN ; Ye WEI ; Hai Peng LI ; Qian ZHEN ; Wei CAI ; Yin WANG ; Chang jun BAO
Chinese Journal of Preventive Medicine 2023;57(10):1550-1557
Objective: To evaluate the secondary attack rates of the SARS-CoV-2 Omicron variant and the associated factors. Methods: A total of 328 primary cases and 40 146 close contacts of the SARS-CoV-2 Omicron variant routinely detected in local areas of Jiangsu Province from February to April 2022 were selected in this study, and those with positive nucleic acid test results during 7 days of centralized isolation medical observation were defined as secondary cases. The demographic information and clinical characteristics were collected, and the secondary attack rate (SAR) and the associated factors were analyzed by using a multivariate logistic regression model. Results: A total of 1 285 secondary cases of close contacts were reported from 328 primary cases, with a SAR of 3.2% (95%CI: 3.0%-3.4%). Among the 328 primary cases, males accounted for 61.9% (203 cases), with the median age (Q1, Q3) of 38.5 (27, 51) years old. Among the 1 285 secondary cases, males accounted for 59.1% (759 cases), with the median age (Q1, Q3) of 34 (17, 52) years old. The multivariate logistic regression model showed that the higher SAR was observed in the primary male cases (OR=1.632, 95%CI: 1.418-1.877), younger than 20 years old (OR=1.766, 95%CI: 1.506-2.072),≥60 years old (OR=1.869, 95%CI: 1.476-2.365), infected with the BA.2 strain branch (OR=2.906, 95%CI: 2.388-3.537), the confirmed common cases (OR=2.572, 95%CI: 2.036-3.249), and confirmed mild cases (OR=1.717, 95%CI: 1.486-1.985). Meanwhile, the higher SAR was observed in the close contacts younger than 20 years old (OR=2.604, 95%CI: 2.250-3.015),≥60 years old (OR=1.287, 95%CI: 1.052-1.573) and exposure for co-residence (OR=27.854, 95%CI: 23.470-33.057). Conclusion: The sex and age of the primary case of the Omicron variant, the branch of the infected strain, case severity of the primary case, as well as the age and contact mode of close contacts are the associated factors of SAR.
Humans
;
Male
;
Middle Aged
;
Young Adult
;
Adult
;
COVID-19/epidemiology*
;
Incidence
;
SARS-CoV-2
;
Logistic Models
9.Involvement of Stromal Interaction Molecule 1 and Its Downstream Proteins in SiO 2 Particle-Induced Release of Inflammatory Mediators from Mouse Macrophage (RAW264.7) Cells.
Wen Ying ZOU ; Zhi Yong HU ; Chang Hong XUE ; Yun Gang LIU ; Hua YE
Biomedical and Environmental Sciences 2022;35(4):345-350
10.Incidence of extrauterine growth retardation and its risk factors in very preterm infants during hospitalization: a multicenter prospective study.
Wei SHEN ; Zhi ZHENG ; Xin-Zhu LIN ; Fan WU ; Qian-Xin TIAN ; Qi-Liang CUI ; Yuan YUAN ; Ling REN ; Jian MAO ; Bi-Zhen SHI ; Yu-Mei WANG ; Ling LIU ; Jing-Hui ZHANG ; Yan-Mei CHANG ; Xiao-Mei TONG ; Yan ZHU ; Rong ZHANG ; Xiu-Zhen YE ; Jing-Jing ZOU ; Huai-Yu LI ; Bao-Yin ZHAO ; Yin-Ping QIU ; Shu-Hua LIU ; Li MA ; Ying XU ; Rui CHENG ; Wen-Li ZHOU ; Hui WU ; Zhi-Yong LIU ; Dong-Mei CHEN ; Jin-Zhi GAO ; Jing LIU ; Ling CHEN ; Cong LI ; Chun-Yan YANG ; Ping XU ; Ya-Yu ZHANG ; Si-Le HU ; Hua MEI ; Zu-Ming YANG ; Zong-Tai FENG ; San-Nan WANG ; Er-Yan MENG ; Li-Hong SHANG ; Fa-Lin XU ; Shao-Ping OU ; Rong JU
Chinese Journal of Contemporary Pediatrics 2022;24(2):132-140
OBJECTIVES:
To investigate the incidence of extrauterine growth retardation (EUGR) and its risk factors in very preterm infants (VPIs) during hospitalization in China.
METHODS:
A prospective multicenter study was performed on the medical data of 2 514 VPIs who were hospitalized in the department of neonatology in 28 hospitals from 7 areas of China between September 2019 and December 2020. According to the presence or absence of EUGR based on the evaluation of body weight at the corrected gestational age of 36 weeks or at discharge, the VPIs were classified to two groups: EUGR group (n=1 189) and non-EUGR (n=1 325). The clinical features were compared between the two groups, and the incidence of EUGR and risk factors for EUGR were examined.
RESULTS:
The incidence of EUGR was 47.30% (1 189/2 514) evaluated by weight. The multivariate logistic regression analysis showed that higher weight growth velocity after regaining birth weight and higher cumulative calorie intake during the first week of hospitalization were protective factors against EUGR (P<0.05), while small-for-gestational-age birth, prolonged time to the initiation of total enteral feeding, prolonged cumulative fasting time, lower breast milk intake before starting human milk fortifiers, prolonged time to the initiation of full fortified feeding, and moderate-to-severe bronchopulmonary dysplasia were risk factors for EUGR (P<0.05).
CONCLUSIONS
It is crucial to reduce the incidence of EUGR by achieving total enteral feeding as early as possible, strengthening breastfeeding, increasing calorie intake in the first week after birth, improving the velocity of weight gain, and preventing moderate-severe bronchopulmonary dysplasia in VPIs.
Female
;
Fetal Growth Retardation
;
Gestational Age
;
Hospitalization
;
Humans
;
Incidence
;
Infant
;
Infant, Newborn
;
Infant, Premature
;
Infant, Very Low Birth Weight
;
Prospective Studies
;
Risk Factors

Result Analysis
Print
Save
E-mail