1.Radiation environment monitoring and evaluation at application sites of online elemental analyzers in cement enterprises
Lun CUI ; Wenbin PENG ; Ying ZHANG ; Hua YANG ; Huijun YU ; Qing CHANG ; Mingfa XU
Chinese Journal of Radiological Health 2025;34(3):408-413
Objective To systematically evaluate the radiation impact of radioactive sources used in online elemental analyzers in cement enterprises on the surrounding environment, and to provide a scientific basis for radiation monitoring and safety management at the application sites of this type of radioactive sources. Methods A statistical analysis was conducted on 15 cement enterprises in Guangxi Province using online elemental analyzers with 252Cf as the radioactive source. On-site investigation of radiation safety management and on-site monitoring of radiation environment were performed, followed by an evaluation based on the collected data. Results Although the gamma radiation ambient dose equivalent rate and neutron ambient dose equivalent rate increased around the sites using online elemental analyzers with 252Cf as the radioactive source, they all met the requirements of the Radiological Health Protection Requirements for Instruments with Sealed Sources (GBZ 125—2009). Conclusion Under the current usage and management conditions, the application of this type of radioactive sources has controllable radiation impact on the surrounding environment, and will not pose a threat to public health and environmental safety. However, continuous strengthening of radiation safety management measures and regular radiation monitoring work are still needed to ensure the safe use of radioactive sources, further reducing potential radiation risks and providing strong guarantees for the safe application of radioactive sources in online elemental analyzers in cement enterprises.
2.The Near-infrared II Emission of Gold Clusters and Their Applications in Biomedicine
Zhen-Hua LI ; Hui-Zhen MA ; Hao WANG ; Chang-Long LIU ; Xiao-Dong ZHANG
Progress in Biochemistry and Biophysics 2025;52(8):2068-2086
Optical imaging is highly valued for its superior temporal and spatial resolution. This is particularly important in near-infrared II (NIR-II, 1 000-3 000 nm) imaging, which offers advantages such as reduced tissue absorption, minimal scattering, and low autofluorescence. These characteristics make NIR-II imaging especially suitable for deep tissue visualization, where high contrast and minimal background interference are critical for accurate diagnosis and monitoring. Currently, inorganic fluorescent probes—such as carbon nanotubes, rare earth nanoparticles, and quantum dots—offer high brightness and stability. However, they are hindered by ambiguous structures, larger sizes, and potential accumulation toxicity in vivo. In contrast, organic fluorescent probes, including small molecules and polymers, demonstrate higher biocompatibility but are limited by shorter emission wavelengths, lower quantum yields, and reduced stability. Recently, gold clusters have emerged as a promising class of nanomaterials with potential applications in biocatalysis, fluorescence sensing, biological imaging, and more. Water-soluble gold clusters are particularly attractive as fluorescent probes due to their remarkable optical properties, including strong photoluminescence, large Stokes shifts, and excellent photostability. Furthermore, their outstanding biocompatibility—attributed to good aqueous stability, ultra-small hydrodynamic size, and high renal clearance efficiency—makes them especially suitable for biomedical applications. Gold clusters hold significant potential for NIR-II fluorescence imaging. Atomic-precision gold clusters, typically composed of tens to hundreds of gold atoms and measuring only a few nanometers in diameter, possess well-defined three-dimensional structures and clear spatial coordination. This atomic-level precision enables fine-tuned structural regulation, further enhancing their fluorescence properties. Variations in cluster size, surface ligands, and alloying elements can result in distinct physicochemical characteristics. The incorporation of different atoms can modulate the atomic and electronic structures of gold clusters, while diverse ligands can influence surface polarity and steric hindrance. As such, strategies like alloying and ligand engineering are effective in enhancing both fluorescence and catalytic performance, thereby meeting a broader range of clinical needs. In recent years, gold clusters have attracted growing attention in the biomedical field. Their application in NIR-II imaging has led to significant progress in vascular, organ, and tumor imaging. The resulting high-resolution, high signal-to-noise imaging provides powerful tools for clinical diagnostics. Moreover, biologically active gold clusters can aid in drug delivery and disease diagnosis and treatment, offering new opportunities for clinical therapeutics. Despite the notable achievements in fundamental research and clinical translation, further studies are required to address challenges related to the standardized synthesis and complex metabolic behavior of gold clusters. Resolving these issues will help accelerate their clinical adoption and broaden their biomedical applications.
3.Material Basis and Its Distribution in vivo of Qili Qiangxin Capsules Analyzed by UPLC-Q-Orbitrap-MS
Jianwei ZHANG ; Jiekai HUA ; Rongsheng LI ; Qin WANG ; Xinnan CHANG ; Wei LIU ; Jie SHEN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(5):185-193
ObjectiveBased on ultra-performance liquid chromatography-quadrupole-electrostatic field orbitrap high resolution mass spectrometry(UPLC-Q-Orbitrap-MS), the chemical constituents of Qili Qiangxin capsules was identified, and their distribution in vivo was analyzed. MethodsUPLC-Q-Orbitrap-MS was used to detect the sample solution of Qili Qiangxin capsules, as well as the serum, brain, heart, lung, spleen, liver and kidney tissues of mice after oral administration. Using the Thermo Xcalibur 2.2 software, the compound information database was constructed, and the molecular formulas of compounds corresponding to the quasi-molecular ions were fitted. Based on the information of retention time, accurate relative molecular mass and fragments, the compounds and their distribution in vivo were analyzed by comparing with the data of reference substances and literature. ResultsA total of 233 compounds, including 70 terpenoids, 60 flavonoids, 23 organic acids, 17 alkaloids, 20 steroids, 7 coumarins and 36 others, were identified or predicted from Qili Qiangxin capsules, 73 of which were identified matching with standard substances. Tissue distribution results showed that 71, 17, 38, 33, 32, 58 and 43 migrating components were detected in blood, brain, heart, lung, spleen, liver and kidney, respectively. Thirty-seven components were absorbed into the blood and heart, including quinic acid, benzoylaconitine benzoylmesaconine and so on. Fourteen components were absorbed into the blood and six tissues, including calycosin, methylnissolin, formononetin, alisol B, alisol A and so on. ConclusionThis study comprehensively analyzes the chemical components of Qili Qiangxin capsules and their distribution in vivo. Among them, astragaloside Ⅳ, salvianolic acid B, ginsenoside Rb1, ginsenoside Rb3, ginsenoside Rd, ginsenoside Rg3, calycosin-7-glucoside, and sinapine may be the important components for the treatment of heart failure, which can provide useful reference for its quality control and research on pharmacodynamic material basis.
4.Classification and advances in clinical research of artificial colloidal plasma substitutes
Zhengyang CHANG ; Ming LI ; Jianpeng GAO ; Jing ZHANG ; Hua LYU ; Licheng ZHANG
Chinese Journal of Blood Transfusion 2025;38(1):136-141
The number of patients with reduced blood volume due to haemorrhage, fractures, severe infections, extensive burns and tumours is increasing, and traditional blood products are no longer able to meet the increasing clinical demand. Therefore, plasma substitutes have become particularly important in fluid resuscitation, especially artificial colloidal solutions, which have a sustained volume expansion time and a good volume expansion effect, and can significantly improve the circulatory status of patients. This article aims to review the classification of artificial colloidal plasma substitutes and their research progress in clinical practice, in order provide a more rigorous, professional and standardized reference for medicine.
5.In situ Analytical Techniques for Membrane Protein Interactions
Zi-Yuan KANG ; Tong YU ; Chao LI ; Xue-Hua ZHANG ; Jun-Hui GUO ; Qi-Chang LI ; Jing-Xing GUO ; Hao XIE
Progress in Biochemistry and Biophysics 2025;52(5):1206-1218
Membrane proteins are integral components of cellular membranes, accounting for approximately 30% of the mammalian proteome and serving as targets for 60% of FDA-approved drugs. They are critical to both physiological functions and disease mechanisms. Their functional protein-protein interactions form the basis for many physiological processes, such as signal transduction, material transport, and cell communication. Membrane protein interactions are characterized by membrane environment dependence, spatial asymmetry, weak interaction strength, high dynamics, and a variety of interaction sites. Therefore, in situ analysis is essential for revealing the structural basis and kinetics of these proteins. This paper introduces currently available in situ analytical techniques for studying membrane protein interactions and evaluates the characteristics of each. These techniques are divided into two categories: label-based techniques (e.g., co-immunoprecipitation, proximity ligation assay, bimolecular fluorescence complementation, resonance energy transfer, and proximity labeling) and label-free techniques (e.g., cryo-electron tomography, in situ cross-linking mass spectrometry, Raman spectroscopy, electron paramagnetic resonance, nuclear magnetic resonance, and structure prediction tools). Each technique is critically assessed in terms of its historical development, strengths, and limitations. Based on the authors’ relevant research, the paper further discusses the key issues and trends in the application of these techniques, providing valuable references for the field of membrane protein research. Label-based techniques rely on molecular tags or antibodies to detect proximity or interactions, offering high specificity and adaptability for dynamic studies. For instance, proximity ligation assay combines the specificity of antibodies with the sensitivity of PCR amplification, while proximity labeling enables spatial mapping of interactomes. Conversely, label-free techniques, such as cryo-electron tomography, provide near-native structural insights, and Raman spectroscopy directly probes molecular interactions without perturbing the membrane environment. Despite advancements, these methods face several universal challenges: (1) indirect detection, relying on proximity or tagged proxies rather than direct interaction measurement; (2) limited capacity for continuous dynamic monitoring in live cells; and (3) potential artificial influences introduced by labeling or sample preparation, which may alter native conformations. Emerging trends emphasize the multimodal integration of complementary techniques to overcome individual limitations. For example, combining in situ cross-linking mass spectrometry with proximity labeling enhances both spatial resolution and interaction coverage, enabling high-throughput subcellular interactome mapping. Similarly, coupling fluorescence resonance energy transfer with nuclear magnetic resonance and artificial intelligence (AI) simulations integrates dynamic structural data, atomic-level details, and predictive modeling for holistic insights. Advances in AI, exemplified by AlphaFold’s ability to predict interaction interfaces, further augment experimental data, accelerating structure-function analyses. Future developments in cryo-electron microscopy, super-resolution imaging, and machine learning are poised to refine spatiotemporal resolution and scalability. In conclusion, in situ analysis of membrane protein interactions remains indispensable for deciphering their roles in health and disease. While current technologies have significantly advanced our understanding, persistent gaps highlight the need for innovative, integrative approaches. By synergizing experimental and computational tools, researchers can achieve multiscale, real-time, and perturbation-free analyses, ultimately unraveling the dynamic complexity of membrane protein networks and driving therapeutic discovery.
6.Research progress on the application of visual electrophysiological examination in early diagnosis of glaucoma
Chang SUN ; Rong ZHANG ; Xiaolin XIAO ; Minpeng XU ; Dong MING ; Xia HUA
International Eye Science 2025;25(7):1073-1078
Glaucoma is a group of optic nerve disorders characterized by progressive optic nerve atrophy and visual field defects, which can lead to irreversible blindness. Early diagnosis of glaucoma is essential for preventing visual loss. However, due to the absence of obvious early symptoms, the diagnosis of glaucoma remains challenging. Visual electrophysiological examinations, an objective approach for evaluating visual function, have the potential to be used in the early diagnosis of glaucoma. This review integrates the latest publications to introduce visual electrophysiological examination techniques, including electroretinography(ERG)and visual evoked potential(VEP). It also explores the mechanisms underlying these techniques and their application value in the early diagnosis of glaucoma. In addition, this review summarizes the advantages, limitations, and applicable scenarios of different visual electrophysiological techniques. Finally, the review provides an outlook on the development prospects of visual electrophysiological techniques in the early diagnosis of glaucoma. The findings of this review can assist clinicians in selecting appropriate diagnostic methods, promote the innovation and development of early visual electrophysiological diagnostic techniques for glaucoma, and contribute to reducing the risk of blindness caused by glaucoma.
7.Discussion on the Pathogenesis of Osteonecrosis of the Femoral Head Under the System of Non-uniform Settlement During Bone Resorption and Multidimensional Composite Bowstring Working in Coordination with the Theory of Liver-Kidney and Muscle-Bone Based on the Concept of Liver and Kidney Sharing the Common Source
Gui-Xin ZHANG ; Feng YANG ; Le ZHANG ; Jie LIU ; Zhi-Jian CHEN ; Lei PENG ; En-Long FU ; Shu-Hua LIU ; Chang-De WANG ; Chun-Zhu GONG
Journal of Guangzhou University of Traditional Chinese Medicine 2024;41(1):239-246
From the perspective of the physiological basis of liver and kidney sharing the common source in traditional Chinese medicine(TCM),and by integrating the theory of kidney dominating bone,liver dominating tendon,and meridian sinew of TCM as well as the bone resorption and collapse theory,and non-uniform settlement theory and lower-limb musculoskeletal bowstring structure theory of modern orthopedics,the pathogenesis of osteonecrosis of the femoral head(ONFH)under the system of non-uniform settlement during bone resorption and multidimensional composite bowstring working in coordination with the theory of liver-kidney and muscle-bone was explored.The key to the TCM pathogenesis of ONFH lies in the deficiency of the liver and kidney,and then the imbalance of kidney yin-yang leads to the disruption of the dynamic balance of bone formation and bone resorption mediated by osteoblasts-osteoclasts,which manifests as the elevated level of bone metabolism and the enhancement of focal bone resorption in the femoral head,and then leads to the necrosis and collapse of the femoral head.It is considered that the kidney dominates bone,liver dominates tendon,and the tendon and bone together constitute the muscle-bone-joint dynamic and static system of the hip joint.The appearance of collapse destroys the originally balanced muscle-bone-joint system.Moreover,the failure of liver blood in the nourishment of muscles and tendons further exacerbates the imbalance of the soft tissues around the hip joint,accelerates the collapse of the muscle-bone-joint dynamic and static system,speeds up the process of femoral head collapse,and ultimately results in irreversible outcomes.Based on the above pathogenesis,the systematic integrative treatment of ONFH should be based on the TCM holistic concept,focuses on the focal improvement of internal and external blood circulation of the femoral head by various approaches,so as to rebuild the coordination of joint function.Moreover,attention should be paid to the physical constitution of the patients,and therapy of tonifying the kidney and regulating the liver can be used to restore the balance between osteogenesis and osteoblastogenesis,and to reconstruct the muscle-bone-joint system,so as to effectively delay or even prevent the occurrence of ONFH.
8.Analysis factors influencing left ventricular thrombus in patients with non-ischemic heart failure
Zhiyan WANG ; Hao ZHANG ; Wenjie LI ; Chang HUA ; Yangyang TANG ; Xinru LIU ; Yuling XIONG ; Qiang LYU ; Jianzeng DONG ; Xin DU
Chinese Journal of Cardiology 2024;52(10):1155-1161
Objective:To explore the influencing factors of left ventricular thrombus (LVT) in patients with non-ischemic heart failure (NIHF) and to construct a nomogram prediction model for NIHF patients with LVT.Methods:This study was a case-control study. A total of 2 592 patients with NIHF hospitalized in Beijing Anzhen Hospital affiliated to Capital Medical University from January 2018 to July 2022 were selected. Fifty-one patients with LVT identified by echocardiography and cardiac magnetic resonance were classified into LVT group. One hundred and sixty patients were selected as the non-LVT group using a 1∶3 propensity score matching based on age and gender. Multivariate logistic regression analysis was used to explore the influencing factors of LVT in patients with NIHF. A nomogram prediction model was constructed, and the area under (AUC) the receiver operating characteristic (ROC) curve was calculated to evaluate the predictive effect of the model.Results:A total of 211 patients were enrolled, with a median age of 40 years old and 160 males (76%). Compared with non-LVT group, LVT group had lower systolic blood pressure ((112±20) mmHg vs. (120±19) mmHg; 1 mmHg=0.133 kPa), lower left ventricular ejection fraction (LVEF; (27±12)% vs. (39±14)% ), lower proportion of patients with history of hypertension (28% (14/51) vs. 44% (70/160)) and atrial fibrillation (8% (4/51)vs.39% (62/160)), higher proportion of patients with New York Heart Association functional class Ⅲ to Ⅳ (class Ⅲ: 59% (30/51) vs. 41% (66/160); class Ⅳ: 28% (14/51) vs. 19% (31/160)), and larger left ventricular end-systolic diameter (LVESD; (56±14) mm vs. (50±15) mm). The levels of hemoglobin ((152±23) g/L vs. (142±30) g/L), D-dimer (508 (300, 1 105) μg/L vs. 158 (68, 379) μg/L), and N-terminal pro-brain natriuretic peptide (3 429 (2 462, 4 734) ng/L vs. 1 288 (422, 2 544) ng/L) were higher in LVT group than in non-LVT group ( P all<0.05). LVT group had a higher proportion of patients using beta-blockers (92% (47/51) vs. 78% (124/160)), angiotensin-converting enzyme inhibitors or angiotensin receptor blockers or angiotensin receptor neprilysin inhibitors (88% (45/51) vs. 72% (115/160)), and anticoagulant drugs (98% (50/51) vs. 32% (51/160)) than non-LVT group (all P <0.05). Multivariate logistic regression showed that reduced LVEF ( OR=1.08, 95% CI 1.02-1.15, P=0.008), decreased LVESD ( OR=1.07, 95% CI 1.01-1.12, P=0.013), and increased D-dimer levels ( OR=5.40, 95% CI 1.98-14.74, P=0.001) were independent influencing factors for LVT in patients with NIHF. The ROC curve showed that the AUC of the nomogram for predicting LVT in patients with NIHF was 0.793 (95% CI 0.710-0.876, P<0.001). Conclusion:Reduced LVEF, decreased LVESD, and elevated D-dimer are associated with LVT in NIHF patients. The predictive model developed based on the above indicators has certain value in predicting LVT in NIHF patients.
9.Clock genes regulate the browning of white fat in obese rats undergoing hypoxia exercise
Dongzi SHI ; Hua ZHANG ; Chang MENG ; Xinrui LI ; Panpan DONG ; Xuewen TIAN ; Qinglu WANG
Chinese Journal of Tissue Engineering Research 2024;28(16):2473-2480
BACKGROUND:Hypoxic exercise can promote the degradation of body fat,and changes in the external environment can affect the circadian rhythm of animals,but the mechanisms by which changes in circadian rhythm regulate adipose tissue browning and fat degradation are unclear. OBJECTIVE:To elucidate the mechanism of clock gene regulation on epididymal adipose tissue Browning in obese rats undergoing hypoxia exercise. METHODS:Forty obese rats were randomly selected and divided into four groups(n=10 per group):normoxic sedentary group,hypoxic sedentary group,normoxic exercise group,and hypoxic exercise group for 4 weeks of intervention.The rats in the sedentary groups were not intervened,while those in the hypoxic groups lived in a hypoxic chamber with an oxygen concentration of 13.6%for the whole day.In the exercise groups,adaptive training was performed in the 1st week,and the speed and length of training remained unchanged for the last 3 weeks.The body mass,body length and perirenal fat mass of obese rats were measured.Serum levels of triacylglycerol,total cholesterol,low-density lipoprotein cholesterol,and high-density lipoprotein cholesterol in obese rats were detected by a biochemical assay kit.Liver fat content was observed by oil red O staining.Hematoxylin-eosin staining was used to evaluate the browning of epididymal adipose tissue of rats in different groups.RNA sequencing combined with bioinformatics analysis was used to analyze transcriptome changes in adipose tissue.The mRNA expressions of PGC-1α,Beclin 1,KLF 2 and Perilipin 1 in epididymal adipose tissue were detected by RT-PCR. RESULTS AND CONCLUSION:Hypoxic exercise intervention significantly decreased body mass,body fat percentage,Lee's index,serum triacylglycerol,total cholesterol,and low-density lipoprotein cholesterol levels(P<0.01),and significantly increased high-density lipoprotein cholesterol level(P<0.01).Oil red O staining and hematoxylin-eosin staining results showed that hypoxic exercise was more effective in promoting fat mobilization in liver tissue and promoting the browning of parepididymal adipose tissue compared with normoxic sedentary group,hypoxic sedentary group,and normoxic exercise group.RNA-seq results showed that hypoxic exercise significantly upregulated the expression of clock genes Dbp,Nr1d1,Sik1 and adipose tissue browning gene Ppargc1a(PGC-1α)and downregulated the expression of Arntl(Bmal1),accompanied by the enhanced expression of genes related to substance metabolism.qRT-PCR indicated that hypoxic exercise significantly increased the mRNA expression levels of PGC-1α and Perilipin1(P<0.01).Therefore,these findings indicate that clock genes play an important role in promoting adipose tissue browning during hypoxic exercise.
10.TCM Guidelines for Diagnosis and Treatment of Chronic Cough in Children
Xi MING ; Liqun WU ; Ziwei WANG ; Bo WANG ; Jialin ZHENG ; Jingwei HUO ; Mei HAN ; Xiaochun FENG ; Baoqing ZHANG ; Xia ZHAO ; Mengqing WANG ; Zheng XUE ; Ke CHANG ; Youpeng WANG ; Yanhong QIN ; Bin YUAN ; Hua CHEN ; Lining WANG ; Xianqing REN ; Hua XU ; Liping SUN ; Zhenqi WU ; Yun ZHAO ; Xinmin LI ; Min LI ; Jian CHEN ; Junhong WANG ; Yonghong JIANG ; Yongbin YAN ; Hengmiao GAO ; Hongmin FU ; Yongkun HUANG ; Jinghui YANG ; Zhu CHEN ; Lei XIONG
Journal of Nanjing University of Traditional Chinese Medicine 2024;40(7):722-732
Following the principles of evidence-based medicine,in accordance with the structure and drafting rules of standardized documents,based on literature research,according to the characteristics of chronic cough in children and issues that need to form a consensus,the TCM Guidelines for Diagnosis and Treatment of Chronic Cough in Children was formulated based on the Delphi method,expert discussion meetings,and public solicitation of opinions.The guideline includes scope of application,terms and definitions,eti-ology and diagnosis,auxiliary examination,treatment,prevention and care.The aim is to clarify the optimal treatment plan of Chinese medicine in the diagnosis and treatment of this disease,and to provide guidance for improving the clinical diagnosis and treatment of chronic cough in children with Chinese medicine.

Result Analysis
Print
Save
E-mail