1.Research Progress on Immunomodulatory Activity and Mechanism of Polygonatum sibiricum
Jinyu LI ; Ningning QIU ; Chang YI ; Mengqin ZHU ; Yanfeng YUAN ; Guang CHEN ; Xili ZHANG ; Wenlong LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(16):298-306
		                        		
		                        			
		                        			Polygonatum sibiricum, as a traditional Chinese medicine with both medicinal and edible properties, has attracted considerable attention due to its functions of nourishing Yin and moistening the lungs, tonifying the spleen and benefiting Qi, and nourishing the kidneys and filling essence. Recent studies have demonstrated that Polygonatum sibiricum plays a significant role in regulating the immune system, effectively enhancing and improving the morphology and function of immune organs, stimulating the proliferation and activation of immune cells, and regulating the secretion and release of immune factors, thereby enhancing the immune function of the body and improving various immune-related diseases. Although a large number of studies have explored the pharmacological effects and mechanisms of P. sibiricum, there has been no systematic review and summary of its immune regulatory activity and mechanisms. Therefore, this article comprehensively reviews the research achievements of P. sibiricum polysaccharides and saponins in the field of immune regulation in recent years, and further sorts out the immune regulatory mechanisms of P. sibiricum in multiple aspects: including increasing the organ index of the spleen and thymus, increasing the number and activity of tumor-suppressive bone marrow hematopoietic stem cells, improving intestinal flora imbalance, regulating the quantity and proportion of T lymphocyte subsets, increasing the level of immunoglobulin, promoting the proliferation of macrophages, enhancing the activity of natural killer cells, increasing the number of white blood cells, and promoting the maturation of dendritic cells, providing a solid theoretical basis and scientific evidence for the research and application of P. sibiricum, and promoting its development and application in traditional Chinese medicine immune enhancers and various functional products. 
		                        		
		                        		
		                        		
		                        	
2.2,3,5,4′-tetrahydroxyldiphenylethylene-2-O-glucoside Attenuates Cerebral Ischemia-reperfusion Injury via PINK1/LETM1 Signaling Pathway
Hongyu ZENG ; Kaimei TAN ; Feng QIU ; Yun XIANG ; Ziyang ZHOU ; Dahua WU ; Chang LEI ; Hongqing ZHAO ; Yuhong WANG ; Xiuli ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):145-154
		                        		
		                        			
		                        			ObjectiveTo investigate the mechanism by which 2,3,5,4'-tetrahydroxyldiphenylethylene-2-O-glucoside (THSG) mitigates cerebral ischemia/reperfusion (CI/R) injury by regulating mitochondrial calcium overload and promoting mitophagy. MethodsSixty male SD rats were randomized into sham, model, SAS (40 mg·kg-1), and low-, medium- and high-dose (10, 20, 40 mg·kg-1, respectively) THSG groups, with 10 rats in each group. The middle cerebral artery occlusion/reperfusion (MCAO/R) model was established by the modified Longa suture method. An oxygen-glucose deprivation/reoxygenation (OGD/R) model was constructed in PC12 cells. Neurological deficits were assessed via Zea Longa scoring, and cerebral infarct volume was measured by 2,3,5-triphenyltetrazolium chloride (TTC) staining. Structural and functional changes of cortical neurons in MCAO/R rats were assessed by hematoxylin-eosin and Nissl staining. PC12 cell viability was detected by cell counting kit-8 (CCK-8) assay, and mitochondrial calcium levels were quantified by Rhod-2 AM. Immunofluorescence was used to detect co-localization of PTEN-induced kinase 1 (PINK1) and leucine zipper/EF-hand-containing transmembrane protein 1 (LETM1) in neurons. Transmission electron microscopy (TEM) was employed to observe mitochondrial morphology in neurons. Western blot was employed to analyze the expression of translocase of outer mitochondrial membrane 20 (TOMM20), autophagy-associated protein p62, microtubule-associated protein light chain 3 (LC3), cysteinyl aspartate-specific proteinase-9 (Caspase-9), B-cell lymphoma 2-associated protein X (Bax), and cytochrome C (Cyt C). ResultsCompared with the sham group, the model group exhibited increased infarct volume (P<0.01) and neurological deficit scores (P<0.01), neuronal structure was disrupted with reduced Nissl bodies. (P<0.01), mitochondrial swelling/fragmentation, decreased PINK1/LETM1 co-localization (P<0.01), upregulated protein levels of LC3Ⅱ/LC3Ⅰ, TOMM20, Caspase-9, Bax, and Cyt C (P<0.01), downregulated protein level of p62 (P<0.05), weakened PC12 viability (P<0.01), and elevated mitochondrial calcium level (P<0.01). Compared with the model group, THSG and SAS groups showed reduced infarct volumes (P<0.05,P<0.01) and neurological deficit scores (P<0.05,P<0.01), mitigated mitochondrial damage, and increased PINK1/LETM1 co-localization (P<0.01). Medium/high-dose THSG and SAS alleviated the neurological damage, increased Nissl bodies (P<0.05,P<0.01), downregulated the protein levels of p62, TOMM20, Caspase-9, Bax, and Cyt C (P<0.05,P<0.01), and elevated the LC3Ⅱ/LC3Ⅰ level (P<0.05,P<0.01). High-dose THSG enhanced PC12 cell viability (P<0.01), increased PINK1/LETM1 co-localization (P<0.01), and reduced mitochondrial calcium (P<0.01). ConclusionTHSG may exert the neuroprotective effect on CI/R injury by activating the PINK1-LETM1 signaling pathway, reducing the mitochondrial calcium overload, and promoting mitophagy. 
		                        		
		                        		
		                        		
		                        	
3.2,3,5,4′-tetrahydroxyldiphenylethylene-2-O-glucoside Attenuates Cerebral Ischemia-reperfusion Injury via PINK1/LETM1 Signaling Pathway
Hongyu ZENG ; Kaimei TAN ; Feng QIU ; Yun XIANG ; Ziyang ZHOU ; Dahua WU ; Chang LEI ; Hongqing ZHAO ; Yuhong WANG ; Xiuli ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):145-154
		                        		
		                        			
		                        			ObjectiveTo investigate the mechanism by which 2,3,5,4'-tetrahydroxyldiphenylethylene-2-O-glucoside (THSG) mitigates cerebral ischemia/reperfusion (CI/R) injury by regulating mitochondrial calcium overload and promoting mitophagy. MethodsSixty male SD rats were randomized into sham, model, SAS (40 mg·kg-1), and low-, medium- and high-dose (10, 20, 40 mg·kg-1, respectively) THSG groups, with 10 rats in each group. The middle cerebral artery occlusion/reperfusion (MCAO/R) model was established by the modified Longa suture method. An oxygen-glucose deprivation/reoxygenation (OGD/R) model was constructed in PC12 cells. Neurological deficits were assessed via Zea Longa scoring, and cerebral infarct volume was measured by 2,3,5-triphenyltetrazolium chloride (TTC) staining. Structural and functional changes of cortical neurons in MCAO/R rats were assessed by hematoxylin-eosin and Nissl staining. PC12 cell viability was detected by cell counting kit-8 (CCK-8) assay, and mitochondrial calcium levels were quantified by Rhod-2 AM. Immunofluorescence was used to detect co-localization of PTEN-induced kinase 1 (PINK1) and leucine zipper/EF-hand-containing transmembrane protein 1 (LETM1) in neurons. Transmission electron microscopy (TEM) was employed to observe mitochondrial morphology in neurons. Western blot was employed to analyze the expression of translocase of outer mitochondrial membrane 20 (TOMM20), autophagy-associated protein p62, microtubule-associated protein light chain 3 (LC3), cysteinyl aspartate-specific proteinase-9 (Caspase-9), B-cell lymphoma 2-associated protein X (Bax), and cytochrome C (Cyt C). ResultsCompared with the sham group, the model group exhibited increased infarct volume (P<0.01) and neurological deficit scores (P<0.01), neuronal structure was disrupted with reduced Nissl bodies. (P<0.01), mitochondrial swelling/fragmentation, decreased PINK1/LETM1 co-localization (P<0.01), upregulated protein levels of LC3Ⅱ/LC3Ⅰ, TOMM20, Caspase-9, Bax, and Cyt C (P<0.01), downregulated protein level of p62 (P<0.05), weakened PC12 viability (P<0.01), and elevated mitochondrial calcium level (P<0.01). Compared with the model group, THSG and SAS groups showed reduced infarct volumes (P<0.05,P<0.01) and neurological deficit scores (P<0.05,P<0.01), mitigated mitochondrial damage, and increased PINK1/LETM1 co-localization (P<0.01). Medium/high-dose THSG and SAS alleviated the neurological damage, increased Nissl bodies (P<0.05,P<0.01), downregulated the protein levels of p62, TOMM20, Caspase-9, Bax, and Cyt C (P<0.05,P<0.01), and elevated the LC3Ⅱ/LC3Ⅰ level (P<0.05,P<0.01). High-dose THSG enhanced PC12 cell viability (P<0.01), increased PINK1/LETM1 co-localization (P<0.01), and reduced mitochondrial calcium (P<0.01). ConclusionTHSG may exert the neuroprotective effect on CI/R injury by activating the PINK1-LETM1 signaling pathway, reducing the mitochondrial calcium overload, and promoting mitophagy. 
		                        		
		                        		
		                        		
		                        	
4.Single-Cell Mapping of Brain Myeloid Cell Subsets Reveals Key Transcriptomic Changes Favoring Neuroplasticity after Ischemic Stroke.
Fangxi LIU ; Xi CHENG ; Chuansheng ZHAO ; Xiaoqian ZHANG ; Chang LIU ; Shanshan ZHONG ; Zhouyang LIU ; Xinyu LIN ; Wei QIU ; Xiuchun ZHANG
Neuroscience Bulletin 2024;40(1):65-78
		                        		
		                        			
		                        			Interactions between brain-resident and peripheral infiltrated immune cells are thought to contribute to neuroplasticity after cerebral ischemia. However, conventional bulk sequencing makes it challenging to depict this complex immune network. Using single-cell RNA sequencing, we mapped compositional and transcriptional features of peri-infarct immune cells. Microglia were the predominant cell type in the peri-infarct region, displaying a more diverse activation pattern than the typical pro- and anti-inflammatory state, with axon tract-associated microglia (ATMs) being associated with neuronal regeneration. Trajectory inference suggested that infiltrated monocyte-derived macrophages (MDMs) exhibited a gradual fate trajectory transition to activated MDMs. Inter-cellular crosstalk between MDMs and microglia orchestrated anti-inflammatory and repair-promoting microglia phenotypes and promoted post-stroke neurogenesis, with SOX2 and related Akt/CREB signaling as the underlying mechanisms. This description of the brain's immune landscape and its relationship with neurogenesis provides new insight into promoting neural repair by regulating neuroinflammatory responses.
		                        		
		                        		
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Ischemic Stroke
		                        			;
		                        		
		                        			Brain/metabolism*
		                        			;
		                        		
		                        			Macrophages
		                        			;
		                        		
		                        			Brain Ischemia/metabolism*
		                        			;
		                        		
		                        			Microglia/metabolism*
		                        			;
		                        		
		                        			Gene Expression Profiling
		                        			;
		                        		
		                        			Anti-Inflammatory Agents
		                        			;
		                        		
		                        			Neuronal Plasticity/physiology*
		                        			;
		                        		
		                        			Infarction/metabolism*
		                        			
		                        		
		                        	
5.Modified Xiaoyaosan Alleviates Depression-like Behaviors by Regulating Activation of Hippocampal Microglia Cells in Rat Model of Juvenile Depression
Jiayi SHI ; Yun XIANG ; Ziyang ZHOU ; Dahua WU ; Feng QIU ; Chang LEI ; Hongyu ZENG ; Kaimei TAN ; Hongqing ZHAO ; Dong YANG ; Yuhong WANG ; Pengxiao GUO ; Xiuli ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(5):46-56
		                        		
		                        			
		                        			ObjectiveTo investigate the mechanism of Baihuan Xiaoyao Decoction (Xiaoyaosan added with Lilii Bulbus and Albiziae Cortex) in alleviating depression-like behaviors of juvenile rats by regulating the polarization of microglia. MethodSixty juvenile SD rats were randomized into normal control, model, fluoxetine, and low-, medium-, and high-dose (5.36, 10.71, 21.42 g·kg-1, respectively) Baihuan Xiaoyao decoction groups. The rat model of juvenile depression was established by chronic unpredictable mild stress (CUMS). The sucrose preference test (SPT) was carried out to examine the sucrose preference of rats. Forced swimming test (FST) was carried out to measure the immobility time of rats. The open field test (OFT) was conducted to measure the total distance, the central distance, the number of horizontal crossings, and the frequency of rearing. Morris water maze (MWM) was used to measure the escape latency and the number of crossing the platform. The immunofluorescence assay was employed to detect the expression of inducible nitric oxide synthase (iNOS, the polarization marker of M1 microglia) and CD206 (the polarization marker of M2 microglia). Real-time polymerase chain reaction was employed to determine the mRNA levels of iNOS, CD206, pro-inflammatory cytokines [tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6] and anti-inflammatory cytokines (IL-4 and IL-10) in the hippocampus. Western blotting was employed to determine the protein levels of iNOS and CD206 in the hippocampus. The levels of IL-4 and IL-6 in the hippocampus were detected by enzyme-linked immunosorbent assay. ResultCompared with the normal control group, the model rats showed a reduction in sucrose preference (P<0.05), an increase in immobility time (P<0.05), decreased motor and exploratory behaviors (P<0.05), and weakened learning and spatial memory (P<0.05). In addition, the model rats showed up-regulated mRNA and protein levels of iNOS and mRNA levels of IL-1β, IL-6, and TNF-α (P<0.05). Compared with the model group, Baihuan Xiaoyao decoction increased the sucrose preference value (P<0.05), shortened the immobility time (P<0.01), increased the motor and exploratory behaviors (P<0.05), and improved the learning and spatial memory (P<0.01). Furthermore, the decoction down-regulated the positive expression and protein level of iNOS, lowered the levels of TNF-α, IL-1β, and IL-6 (P<0.01), promoted the positive expression of CD206, and elevated the levels of IL-4 and IL-10 (P<0.01) in the hippocampus of the high dose group. Moreover, the high-dose Baihuan Xiaoyao decoction group had higher sucrose preference value (P<0.01), shorter immobility time (P<0.01), longer central distance (P<0.01), stronger learning and spatial memory (P<0.01), higher positive expression and protein level of iNOS (P<0.01), lower levels of TNF-α, IL-1β, and IL-6 (P<0.05, P<0.01), lower positive expression and mRNA level of iNOS (P<0.05), and higher levels of IL-4 and IL-10 (P<0.05, P<0.01) than the fluoxetine group. ConclusionBaihuan Xiaoyao decoction can improve the depression-like behavior of juvenile rats by inhibiting the M1 polarization and promoting the M2 polarization of microglia in the hippocampus. 
		                        		
		                        		
		                        		
		                        	
6.Research progress in SARS-CoV-2 nucleic acid detection based on microfluidic platforms
Fan YANG ; Lan WANG ; Hong QIU ; Cheng KONG ; Wei-Wei ZHANG ; Chang GU ; Yue-Rong ZHU
Chinese Medical Equipment Journal 2024;45(1):101-107
		                        		
		                        			
		                        			The detection principle of microfluidic microfluidic technology was introduced.The current research status of microfluidic platform-based SARS-CoV-2 nucleic acid detection technologies were reviewed such as reverse transcription quantitative real-time polymerase chain reaction(RT-qPCR),digital PCR,isothermal amplification and clustered regularly interspaced palindromic repeats/CRISPR-associated protein.The deficiencies of microfluidic platform-based SARS-CoV-2 nucleic acid detection were analyzed.It's pointed out microfluidic platform-based SARS-CoV-2 nucleic acid detection had to be optimized and validated clinically in specialty,sensitivity,detection limit,reproducibility,informatization,quality control and reagent cost.[Chinese Medical Equipment Journal,2024,45(1):101-107]
		                        		
		                        		
		                        		
		                        	
7.A multicenter retrospective cohort study on the attributable risk of patients with Acinetobacter baumannii sterile body fluid infection
Lei HE ; Dao-Bin JIANG ; Ding LIU ; Xiao-Fang ZHENG ; He-Yu QIU ; Shu-Mei WU ; Xiao-Ying WU ; Jin-Lan CUI ; Shou-Jia XIE ; Qin XIA ; Li HE ; Xi-Zhao LIU ; Chang-Hui SHU ; Rong-Qin LI ; Hong-Ying TAO ; Ze-Fen CHEN
Chinese Journal of Infection Control 2024;23(1):42-48
		                        		
		                        			
		                        			Objective To investigate the attributable risk(AR)of Acinetobacter baumannii(AB)infection in criti-cally ill patients.Methods A multicenter retrospective cohort study was conducted among adult patients in inten-sive care unit(ICU).Patients with AB isolated from sterile body fluid and confirmed with AB infection in each cen-ter were selected as the infected group.According to the matching criteria that patients should be from the same pe-riod,in the same ICU,as well as with similar APACHE Ⅱ score(±5 points)and primary diagnosis,patients who did not infect with AB were selected as the non-infected group in a 1:2 ratio.The AR was calculated.Results The in-hospital mortality of patients with AB infection in sterile body fluid was 33.3%,and that of non-infected group was 23.1%,with no statistically significant difference between the two groups(P=0.069).The AR was 10.2%(95%CI:-2.3%-22.8%).There is no statistically significant difference in mortality between non-infected pa-tients and infected patients from whose blood,cerebrospinal fluid and other specimen sources AB were isolated(P>0.05).After infected with AB,critically ill patients with the major diagnosis of pulmonary infection had the high-est AR.There was no statistically significant difference in mortality between patients in the infected and non-infec-ted groups(P>0.05),or between other diagnostic classifications.Conclusion The prognosis of AB infection in critically ill patients is highly overestimated,but active healthcare-associated infection control for AB in the ICU should still be carried out.
		                        		
		                        		
		                        		
		                        	
8.Biomechanical analysis of the bones in a rat model of osteoporosis based on the combination of disease and syndrome
Chubin LIN ; Xingpeng HE ; Yuhui QIU ; Wenjin WU ; Yu CHANG ; Tao YE ; Pengfei LI ; Jian YANG
Chinese Journal of Tissue Engineering Research 2024;28(23):3636-3641
		                        		
		                        			
		                        			BACKGROUND:Kidney deficiency is the main pathogenesis of osteoporosis.To study the relationship between the two major syndrome types of kidney deficiency,Kidney-Yang deficiency and Kidney-Yin deficiency,is beneficial for the development of clinical diagnosis and treatments based on the combination of disease and syndrome. OBJECTIVE:To evaluate the biomechanical differences of the rat femurs with Kidney-Yang deficiency and Kidney-Yin deficiency caused by Yougui pills,and to demonstrate the scientific efficacy of medication based on the combination of disease and syndrome in osteoporosis from a biomechanical perspective. METHODS:The bilateral ovaries of 60 female Sprague-Dawley rats were surgically removed to establish an ovariectomized osteoporosis model.At 10 weeks after modeling,all the rats were randomly divided into a Kidney-Yang deficiency group(n=30)and a Kidney-Yin deficiency group(n=30).Rats with Kidney-Yang deficiency were given gluteal intramuscular injection of hydrocortisone,while rats with Kidney-Yin deficiency were orally administered with thyroid tablet suspension,once a day,for 14 consecutive days.After successful modeling,20 rats in each group were given a suspension of Yougui pills by gavage once a day for 12 consecutive weeks and the remaining 10 rats were used as the control group without intervention.After gavage,the microstructural parameters of the bone were measured using Micro-CT scanning.Three-point bending,finite element simulation,femoral head compression,and surface indentation distribution experiments of the femurs were performed on a mechanical testing machine. RESULTS AND CONCLUSION:Micro-CT revealed that the femoral bone density,bone volume fraction,bone surface density,trabecular number,and trabecular separation were improved in the Kidney-Yin deficiency+Yougui pills group compared with the Kidney-Yin deficiency group(P<0.05);the femoral bone volume fraction,bone surface density,trabecular number,and trabecular thickness were improved in the Kidney-Yang deficiency+Yougui pills group compared with the Kidney-Yang deficiency group(P<0.05).The three-point bending experiment showed that the femur elastic modulus,maximum bending strength and bending fracture strength were decreased(P<0.05)and toughness was increased(P<0.05)in the Kidney-Yang deficiency+Yougui pills group compared with the Kidney-Yang deficiency group.Finite element simulation showed that Yougui pills could significantly improve the bending resistance of the femurs in the Kidney-Yang deficiency group,but had no significant effect on the Kidney-Yin deficiency group.The femoral head compression experiments showed that Yougui pills could enhance the ability of the femoral head to resist deformation in the Kidney-Yang deficiency group,but there was no significant difference in the effect of Yougui pills on the surface properties of the femoral head in the Kidney-Yin deficiency group and the Kidney-Yang deficiency group.To conclude,Yougui pills can significantly enhance the biomechanical properties of the osteoporotic bones with Kidney-Yang deficiency,but have no significant effect on the osteoporotic bone with Kidney-Yin deficiency.
		                        		
		                        		
		                        		
		                        	
9.Comparison of HBV-specific CD8+T cell reactivity across the patients with chronic HBV infection,cirrhosis or hepatocellular carcinoma
Mengying ZHU ; Ruixue JI ; Pinqing LI ; Yuqi MA ; Damin JIAO ; Fangping YUE ; Yandan WU ; Jie QIU ; Xiling FU ; Jiabao CHANG
Immunological Journal 2024;40(4):365-374
		                        		
		                        			
		                        			This study was performed to investigate the features of HBV-specific CD8+T cell reactivity in patients with chronic hepatitis B(CHB),HBV-induced liver cirrhosis(LC)or hepatocellular carcinoma(HCC).A total of 124 CHB patients,36 LC patients,and 114 HCC patients were enrolled in this study.The reactive HBV-specific CD8+T cells in peripheral blood were enumerated using an innovative ELISPOT system.In addition,19 CHB patients and 20 HCC patients were longitudinally monitored with an interval of 3-5 months.Data showed that the numbers of reactive HBV-specific CD8+T cells in CHB group were not significantly different from that in LC group,but obviously lower than that in HCC group(P=0.009 9),especially HBsAg-,HBpol-and HBe/cAg-specific CD8+T cells.In CHB group,the patients with normal ALT level,AST level,or low HBV-DNA load showed significantly more reactive HBV-specific CD8+T cells than the patients with abnormal ALT level,abnormal AST level,or high HBV-DNA load.Furthermore,the duration of NUCs treatment had an impact on the HBV-specific CD8+T cell reactivity in CHB patients,while different NUCs at the same treatment duration did not bring different reactivity of HBV-specific T cells.In LC group,the HBeAg-positive patients presented much more reactive HBV-specific CD8+T cells than the HBeAg-negative patients did.In HCC group,the numbers of reactive HBV-specific CD8+T cells in the patients with normal AFP level or normal DCP level were significantly higher than that in the patients with abnormal AFP level or abnormal DCP level.Longitudinal monitoring results showed that HBV-specific CD8+T cell reactivity displayed a slow upward trend in the CHB patients undergoing NUCs treatment,and an obvious increasing in the HCC patients undergoing combined treatment of targeted drugs and immunotherapy.Taken together,the features of HBV-specific CD8+T cell reactivity are distinct among the CHB,LC and HCC patients,and are influenced by virological indicators,tumor markers and treatment regimens.Therefore,more attention should be paid to the changes of HBV-specific CD8+T cell reactivity during clinical treatment.
		                        		
		                        		
		                        		
		                        	
10.Therapeutic effect of calcaneal beak-like fracture secondary to calcaneal osteomyelitis caused by diabetic foot
Wei-Feng LI ; Yan-Jun GAO ; Shi-Bo WANG ; Pei-Can RUAN ; Yuan-Zhou QIU ; Chang-Qiang HE
China Journal of Orthopaedics and Traumatology 2024;37(6):609-615
		                        		
		                        			
		                        			Objective To explore clinical effect of vancomycin calcium sulfate combined with internal fixation on cal-caneal beak-like fracture secondary to calcaneal osteomyelitis caused by diabetic foot.Methods From April 2018 to October 2021,a retrospective analysis was performed on 5 patients with calcaneal bone osteomyelitis secondary to diabetic foot,includ-ing 2 males and 3 females,aged from 48 to 60 years old;diabetes course ranged from 5 to 13 years;the courses of diabetic foot disease ranged from 18 to 52 days;5 patients were grade Ⅲ according to Wagner classification.All patients were treated with debridement,vancomycin bone cement implantation,negative pressure aspiration at stage Ⅰ,vancomycin calcium sulfate and internal fixation at stage Ⅱ for calcaneal beak-like fracture.Surgical incision and fracture healing time were recorded,and the recurrence of osteomyelitis was observed.American Orthopedic Foot Andankle Society(AOFAS)score and exudation at 12 months after operation were evaluated.Results Five patients were successfully completed operation without lower extremity vascular occlusion,and were followed up for 16 to 36 months.The wound healing time after internal fixation ranged from 16 to 26 days,and healing time of fractures ranged from 16 to 27 weeks.AOFAS score ranged from 65 to 91 at 12 months after oper-ation,and 2 patients got excellent result,2 good and 1 fair.Among them,1 patient with skin ulcer on the back of foot caused by scalding at 5 months after operation(non-complication),was recovered after treatment;the wound leakage complication oc-curred in 2 patients,and were recovered after dressing change.No osteomyelitis or fracture occurred in all patients.Conclusion Vancomycin calcium sulfate with internal fixation in treating calcaneal osteomyelitis secondary to calcaneal osteomyelitis caused by diabetic foot could not only control infection,but also promote fracture healing,and obtain good clinical results.
		                        		
		                        		
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail