1.Strategies for Building an Artificial Intelligence-Empowered Trusted Federated Evidence-Based Analysis Platform for Spleen-Stomach Diseases in Traditional Chinese Medicine
Bin WANG ; Huiying ZHUANG ; Zhitao MAN ; Lifeng REN ; Chang HE ; Chen WU ; Xulei HU ; Xiaoxiao WEN ; Chenggong XIE ; Xudong TANG
Journal of Traditional Chinese Medicine 2026;67(1):95-102
This paper outlines the development of artificial intelligence (AI) and its applications in traditional Chinese medicine (TCM) research, and elucidates the roles and advantages of large language models, knowledge graphs, and natural language processing in advancing syndrome identification, prescription generation, and mechanism exploration. Using spleen-stomach diseases as an example, it demonstrates the empowering effects of AI in classical literature mining, precise clinical syndrome differentiation, efficacy and safety prediction, and intelligent education, highlighting an upgraded research paradigm that evolves from data-driven and knowledge-driven approaches to intelligence-driven models. To address challenges related to privacy protection and regulatory compliance in cross-institutional data collaboration, a "trusted federated evidence-based analysis platform for TCM spleen-stomach diseases" is proposed, integrating blockchain-based smart contracts, federated learning, and secure multi-party computation. The deep integration of AI with privacy-preserving computing is reshaping research and clinical practice in TCM spleen-stomach diseases, providing feasible pathways and a technical framework for building a high-quality, trustworthy TCM big-data ecosystem and achieving precision syndrome differentiation.
2.Design of a Capture Stress-Free Marmoset Monkey Chair Device for Experiments and Its Preliminary Application
Shengye XU ; Junfeng HUANG ; Yihang CHEN ; Liangtang CHANG
Laboratory Animal and Comparative Medicine 2025;45(1):67-72
ObjectiveTo avoid stress responses in experimental monkeys caused by direct capture, and to improve the adaptability and experimental efficiency of marmosets in behavioral, two-photon imaging, and electrophysiological experiments, a device for immobilizing marmosets without the need for capture is developed. MethodsA set of compatible transport cage and monkey chair was produced through 3D graphic design and printing. First, the transport cage was aligned with the feeding outlet of the experimental housing cage, and the marmoset was gently guided into the transport cage. Then, the transport cage was connected to the monkey chair, and the marmoset was gently guided into the chair for immobilization. Subsequent experiments were carried out afterward. The effectiveness was evaluated by observing the efficiency of transport and immobilization, the marmoset cooperation level, and stress responses. ResultsAfter testing and improvements, the device successfully completed immobilization of marmosets without the need for capture, significantly improving the fluency and efficiency of the experiment. As the number of operations increased, the marmosets became more cooperative, and the operation speed was significantly enhanced. After using the device, the stress responses were noticeably reduced, with marmosets showing lower stress levels. In particular, compared to traditional capture methods, the use of this device significantly reduced marmoset anxiety and discomfort, increasing their cooperation levels during the experiment. ConclusionThe monkey chair device designed allows for restraint of marmosets without the need for capture, ensuring smooth progress of subsequent experiments while also safeguarding animal welfare. This device is easy to operate, highly practical, cost-effective, and has great potential for widespread application.
3.Mammalian pluripotent stem cells:effects on creating disease models,pathogenesis,drug discovery and personalized treatment
Wenqiang XU ; Haolin CHEN ; Chang YAN ; Tao XU ; Yabin XIE ; Xueling LI
Chinese Journal of Tissue Engineering Research 2025;29(1):136-146
BACKGROUND:The self-renewal and multi-directional differentiation of pluripotent stem cells possess the potential to revolutionize people's understanding of biology,medicine,development,and disease.Stem cells play an important role in the early stage of embryonic development,and the study of them could be beneficial to understanding of the basic principles of biological development and tissue or organ formation,exploring the potential mechanisms of various diseases,studying the repair and regeneration of damaged tissues or organs,and promoting drug discovery and personalized treatment. OBJECTIVE:To review the research progress of pluripotent stem cells,summarize and categorize the fundamental types of pluripotent stem cells,and elucidate the lineage situations of various types of pluripotent stem cells in common mammals. METHODS:PubMed,Web of Science,CNKI,and WanFang databases were searched systematically,with the keywords"pluripotent stem cells;embryonic stem cells;induced pluripotent stem cells;expanded potential stem cells;livestock pluripotent stem cells"in English and Chinese.The 99 articles related to mammalian pluripotent stem cells were systematically screened according to inclusion and exclusion criteria,and then reviewed. RESULTS AND CONCLUSION:(1)According to classical theory in mouse embryonic stem cell research,the pluripotent state of stem cells is divided into two forms:na?ve and primed.Na?ve state corresponds to the inner cell mass of pre-implantation embryos before attachment to the uterine wall,while primed state corresponds to the epiblast after implantation.These two states exhibit significant differences in epigenetic features,transcriptional activity,external signal dependency,and metabolic phenotype.It is later discovered that there is an intermediate state between na?ve and primed called formative pluripotency.Therefore,the pluripotency of pluripotent stem cells is a continuous developmental process rather than a unique cell state.(2)In addition to obtaining pluripotent stem cells from the inner cell mass,there are various methods and lineages for acquiring pluripotent stem cells,including embryonic germ cells established using primitive germ cells from mouse embryos,induced pluripotent stem cells created by the dedifferentiation of adult mouse and human fibroblasts with four factors—Oct3/4,Sox2,c-Myc,and Klf4;embryonic stem cell-like cell lines cultured from somatic cell nuclear transfer,parthenogenesis,neonatal or adult testicular or ovarian tissue,very small embryonic-like stem cells derived from various adult tissues and expanded pluripotent stem cells derived from pre-implantation stages.These pluripotent stem cells all share the common characteristics of continuous self-renewal,expressing core pluripotency factors and possessing the ability to differentiate into the three primary germ layers.(3)Currently,pluripotent stem cells are being used for disease modeling to study the mechanisms of various diseases and develop new drugs.Simultaneously,scientists are attempting to use pluripotent stem cells to cultivate various tissues and organs,offering new possibilities for regenerative medicine and transplantation.However,the clinical application of pluripotent stem cells faces safety challenges,including issues of cell mutations and immune rejection.Continual improvement in the methods of generating pluripotent stem cells will make them safer and more efficient for clinical applications.(4)Based on the methods of obtaining and lineage establishment of pluripotent stem cells in mice and humans,various types of pluripotent stem cells have been established in livestock,including embryonic stem cells,induced pluripotent stem cells,germ lineages of pluripotent stem cells,and expanded potential stem cells.Research on livestock pluripotent stem cells opens up new avenues for animal reproduction,breeding,genetic engineering,disease modeling,drug screening,and the conservation of endangered wildlife.
4.Current Status and Prospects of Research on the Potential Neurobiological Mechanisms of Acupuncture in the Treatment of Tobacco Dependence
Shumin CHEN ; Jin CHANG ; Chaoren TAN ; Hao ZHU ; Jinsheng YANG ; Zhao LIU ; Yingying WANG
Journal of Traditional Chinese Medicine 2025;66(4):421-426
This paper comprehensively discusses on the potential neurobiological mechanisms of acupuncture in the treatment of tobacco dependence, focusing on three important aspects, including acupuncture's regulation of tobacco dependence behavior, effects of acupuncture on withdrawal syndrome, and the role of acupuncture in preventing relapse. It is found that acupuncture can inhibit drug-seeking behavior by regulating the reward pathway and related neurons, such as dopamine, thus modulating tobacco dependence behavior. It also alleviates withdrawal symptoms by improving the oral environment of smokers and reducing negative emotions after quitting. Furthermore, acupuncture can prevent relapse by decreasing brain network activity related to smoking cravings and improving cognitive brain functions like addiction memory. Currently, research on the specific neurobiological mechanism of acupuncture in treating tobacco dependence and the involved neural circuits is limited. Future research directions are proposed, including the evaluation of clinical effects, exploration of specific therapeutic mechanisms, investigation of brain pathology, and strengthening the exploration of brain functions. Additionally, combining modern technologies to clarify the neural circuits involved in acupuncture intervention will provide a basis for acupuncture treatment of tobacco addiction.
5.The Mechanisms of Quercetin in Improving Alzheimer’s Disease
Yu-Meng ZHANG ; Yu-Shan TIAN ; Jie LI ; Wen-Jun MU ; Chang-Feng YIN ; Huan CHEN ; Hong-Wei HOU
Progress in Biochemistry and Biophysics 2025;52(2):334-347
Alzheimer’s disease (AD) is a prevalent neurodegenerative condition characterized by progressive cognitive decline and memory loss. As the incidence of AD continues to rise annually, researchers have shown keen interest in the active components found in natural plants and their neuroprotective effects against AD. Quercetin, a flavonol widely present in fruits and vegetables, has multiple biological effects including anticancer, anti-inflammatory, and antioxidant. Oxidative stress plays a central role in the pathogenesis of AD, and the antioxidant properties of quercetin are essential for its neuroprotective function. Quercetin can modulate multiple signaling pathways related to AD, such as Nrf2-ARE, JNK, p38 MAPK, PON2, PI3K/Akt, and PKC, all of which are closely related to oxidative stress. Furthermore, quercetin is capable of inhibiting the aggregation of β‑amyloid protein (Aβ) and the phosphorylation of tau protein, as well as the activity of β‑secretase 1 and acetylcholinesterase, thus slowing down the progression of the disease.The review also provides insights into the pharmacokinetic properties of quercetin, including its absorption, metabolism, and excretion, as well as its bioavailability challenges and clinical applications. To improve the bioavailability and enhance the targeting of quercetin, the potential of quercetin nanomedicine delivery systems in the treatment of AD is also discussed. In summary, the multifaceted mechanisms of quercetin against AD provide a new perspective for drug development. However, translating these findings into clinical practice requires overcoming current limitations and ongoing research. In this way, its therapeutic potential in the treatment of AD can be fully utilized.
6.Serum β2-MG, sCHE, and PSGL-1 Expression in Patients with Esophageal Cancer and Their Association with Postoperative Lung Infection After Mediastinoscopy
Yu FENG ; Rulin QIAN ; Dong CUI ; Chaoying CHANG ; Maolin CHEN
Cancer Research on Prevention and Treatment 2025;52(1):68-73
Objective To investigate serum β2-MG, sCHE, and PSGL-1 expression in patients with esophageal cancer and their relationship to lung infection after mediastinoscopy. Methods A total of 118 patients with esophageal cancer were selected and divided into infected and uninfected groups according to whether they developed lung infection after surgery. An automatic microbiological identification system was used to detect the pathogenic bacteria of lung infection. ELISA was used to detect the levels of β2-MG, sCHE, and PSGL-1. Multivariate logistic regression was used to analyze the influencing factors of postoperative lung infection in patients with esophageal cancer. ROC curves were plotted to analyze the assessment value of serum β2-MG, sCHE, and PSGL-1 on postoperative lung infection. Results Fifty-two strains of bacteria were isolated from the sputum of 38 patients with postoperative lung infections, and these included 35 (67.31%) Gram-negative, 14 (26.92%) Gram-positive, and 3 (5.77%) fungal strains. The difference in long-term smoking history between the infected and uninfected groups was statistically significant (P<0.05). Serum β2-MG and PSGL-1 levels were significantly higher and sCHE levels were significantly lower in the infected group than in the uninfected group (P<0.05). Serum β2-MG and PSGL-1 levels were sequentially higher (P<0.05) and sCHE levels were sequentially lower (P<0.05) in the mild, moderate, and severe lung infection groups. Long-term smoking history, β2-MG, and PSGL-1 were risk factors affecting postoperative lung infection in patients with esophageal cancer (P<0.05), and sCHE was a protective factor (P<0.05). The AUCs of serum β2-MG, sCHE, and PSGL-1 for assessing postoperative lung infections were 0.807, 0.845, and 0.800, respectively, and the AUC of the three combined factors for assessing postoperative lung infections was 0.954, which was superior to that assessed individually (Zcombination vs. β2-MG=2.576, Zcombination vs. sCHE=2.623, Zcombination vs. PSGL-1=2.574, all P<0.05). Conclusion The serum levels of β2-MG and PSGL-1 increase and the sCHE level decreases in patients with esophageal cancer and postoperative pulmonary infection, which are also related with lung infection. Combined testing can improve the evaluation value of postoperative pulmonary infection in patients.
7.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
8.Intratesticular Testosterone and Its Precursors among Azoospermic Men: A Pilot Study
I-Shen HUANG ; Li-Hua LI ; Wei-Jen CHEN ; Chi-Chang JUAN ; William J. HUANG
The World Journal of Men's Health 2025;43(1):142-153
Purpose:
The study aimed to comprehensively analyze testosterone and precursor concentrations in the testicular interstitial fluid (TIF) of men with azoospermia, exploring their significance in the testicular microenvironment and their correlation with testicular sperm retrieval outcomes.
Materials and Methods:
We analyzed 37 TIF samples, including 5 from men with obstructive azoospermia (OA) and 32 from men with non-obstructive azoospermia (NOA). Liquid chromatography with tandem mass spectrometry quantified testosterone and precursor levels. Comparative assessments of the outcomes of testicular sperm retrieval were performed between the OA and NOA groups as well as among men with NOA.
Results:
Men with NOA who had not undergone hormone treatment exhibited significantly higher intratesticular concentrations of testosterone (median 1,528.1 vs. 207.5 ng/mL), androstenedione (median 10.6 vs. 1.9 ng/mL), and 17-OH progesterone (median 13.0 vs. 1.8 ng/mL) than men diagnosed with OA. Notably, in the subgroup of patients with NOA subjected to medical treatment, men with successful sperm retrieval had significantly reduced levels of androstenedione (median androstenedione 5.7 vs. 18.5 ng/mL, p=0.004). Upon a more detailed analysis of these men who underwent hormone manipulation treatment, the testosterone/androstenedione ratio (indicative of HSD17B3 enzyme activity) was markedly increased in men with successful sperm retrieval (median: 365.8 vs. 165.0, p=0.008) compared with individuals with NOA who had unsuccessful sperm recovery. Furthermore, within the subset of men with NOA who did not undergo medical treatment before microdissection testicular sperm extraction but achieved successful sperm retrieval, the ratio of 17-OH progesterone/progesterone (indicative of CYP17A1 activity) was substantially higher.
Conclusions
The study suggests distinct testosterone biosynthesis pathways in men with compromised spermatogenesis and those with normal spermatogenesis. Among NOA men with successful retrieval after hormone optimization therapy, there was decreased androstenedione and increased HSD17B3 enzyme activity. These findings have diagnostic and therapeutic implications for the future.
9.Multidimensional Analysis of Mechanisms of Nuciferine Against Cerebral Ischemia Based on Transcriptomic Data
Yingying QIN ; Peng LI ; Sha CHEN ; Yan LIU ; Jintang CHENG ; Qingxia XU ; Guohua WANG ; Jing ZHOU ; An LIU ; Chang CHEN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(9):184-191
ObjectiveStudies have shown that nuciferine has anti-cerebral ischemia effect, but the specific mechanism of action has not been elaborated. Based on the transcriptome results, the pharmacological mechanism of nuciferine against cerebral ischemia was analyzed from multiple dimensions including tissue, cell, pathological process, biological process and signaling pathway. MethodsThirty SD rats were randomly divided into the sham group, model group and nuciferine group(40 mg·kg-1) according to weight. Except for the sham group, the model of middle cerebral artery occlusion(MCAO) was established by thread embolization method after 30 min of administration in the other two groups. Twenty-four hours after surgery, transcriptome sequencing was used to detect the gene expression profiles in the cortex penumbra of rat cerebral tissue, and gene ontology(GO) and kyoto encyclopedia of genes and genomes(KEGG) pathway enrichment analysis were performed for differentially expressed genes. The mechanismof nuciferine against cerebral ischemia was analyzed from 5 dimensions of tissue, cell, pathological process, biological process and signaling pathway by the transcriptome-based multi-scale network pharmacology platform(TMNP). ResultsTranscriptome sequencing and gene quantitative analysis showed that 667 genes were significantly reversed by nuciferine. Further enrichment analysis of KEGG and GO suggested that the pathways of nuciferine involved regulating stress response, ion transport, cell proliferation and differentiation, and synaptic function. TMNP research found that at the tissue level, nuciferine could significantly improve the cerebral tissue injury caused by ischemia. At the cellular and pathological levels, nuciferine could play an anti-cerebral ischemia role by improving the state of various nerve cells, mobilizing immune cells, regulating inflammation. And at the level of biological processes and signaling pathways, nuciferine mainly acted on the processes such as vascular remodeling, inflammation-related signaling pathways, and synaptic signaling. ConclusionCombined with the results of transcriptome sequencing, gene quantitative analysis and TMNP, the mechanism of nuciferine against cerebral ischemia may be related to processes such as intervening in stress response and inflammation, affecting vascular remodeling and regulating synaptic function. These results can provide a basis and reference for further study of the pharmacological mechanism of nuciferine against cerebral ischemia.
10.The Adoption of Non-invasive Photobiomodulation in The Treatment of Epilepsy
Ao-Yun LI ; Zhan-Chuang LU ; Li CAO ; Si CHEN ; Hui JIANG ; Chang-Chun CHEN ; Lei CHEN
Progress in Biochemistry and Biophysics 2025;52(4):882-898
Epilepsy is a chronic neurological disease caused by abnormal synchronous discharge of the brain, which is characterized by recurrent and transient neurological abnormalities, mainly manifested as loss of consciousness and limb convulsions, and can occur in people of all ages. At present, anti-epileptic drugs (AEDs) are still the main means of treatment, but their efficacy is limited by the problem of drug resistance, and long-term use can cause serious side effects, such as cognitive dysfunction and vital organ damage. Although surgical resection of epileptic lesions has achieved certain results in some patients, the high cost and potential risk of neurological damage limit its scope of application. Therefore, the development of safe, accurate and personalized non-invasive treatment strategies has become one of the key directions of epilepsy research. In recent years, photobiomodulation (PBM) has gained significant attention as a promising non-invasive therapeutic approach. PBM uses light of specific wavelengths to penetrate tissues and interact with photosensitive molecules within cells, thereby modulating cellular metabolic processes. Research has shown that PBM can enhance mitochondrial function, promote ATP production, improve meningeal lymphatic drainage, reduce neuroinflammation, and stimulate the growth of neurons and synapses. These biological effects suggest that PBM not only holds the potential to reduce the frequency of seizures but also to improve the metabolic state and network function of neurons, providing a novel therapeutic avenue for epilepsy treatment. Compared to traditional treatment methods, PBM is non-invasive and avoids the risks associated with surgical interventions. Its low risk of significant side effects makes it particularly suitable for patients with drug-resistant epilepsy, offering new therapeutic options for those who have not responded to conventional treatments. Furthermore, PBM’s multi-target mechanism enables it to address a variety of complex etiologies of epilepsy, demonstrating its potential in precision medicine. In contrast to therapies targeting a single pathological mechanism, PBM’s multifaceted approach makes it highly adaptable to different types of epilepsy, positioning it as a promising supplementary or alternative treatment. Although animal studies and preliminary clinical trials have shown positive outcomes with PBM, its clinical application remains in the exploratory phase. Future research should aim to elucidate the precise mechanisms of PBM, optimize light parameters, such as wavelength, dose, and frequency, and investigate potential synergistic effects with other therapeutic modalities. These efforts will be crucial for enhancing the therapeutic efficacy of PBM and ensuring its safety and consistency in clinical settings. This review summarizes the types of epilepsy, diagnostic biomarkers, the advantages of PBM, and its mechanisms and potential applications in epilepsy treatment. The unique value of PBM lies not only in its multi-target therapeutic effects but also in its adaptability to the diverse etiologies of epilepsy. The combination of PBM with traditional treatments, such as pharmacotherapy and neuroregulatory techniques, holds promise for developing a more comprehensive and multidimensional treatment strategy, ultimately alleviating the treatment burden on patients. PBM has also shown beneficial effects on neural network plasticity in various neurodegenerative diseases. The dynamic remodeling of neural networks plays a critical role in the pathogenesis and treatment of epilepsy, and PBM’s multi-target mechanism may promote brain function recovery by facilitating neural network remodeling. In this context, optimizing optical parameters remains a key area of research. By adjusting parameters such as wavelength, dose, and frequency, researchers aim to further enhance the therapeutic effects of PBM while maintaining its safety and stability. Looking forward, interdisciplinary collaboration, particularly in the fields of neuroscience, optical engineering, and clinical medicine, will drive the development of PBM technology and facilitate its transition from laboratory research to clinical application. With the advancement of portable devices, PBM is expected to provide safer and more effective treatments for epilepsy patients and make a significant contribution to personalized medicine, positioning it as a critical component of precision therapeutic strategies.

Result Analysis
Print
Save
E-mail