1.Neuroprotective Mechanisms of Ciliary Neurotrophic Factor in Retinal Ganglion Cells: Insights from Microarray Analysis
Seungyeon LEE ; Jin-Ok CHOI ; Ahreum HWANG ; Chan Yun KIM ; Kwanghyun LEE
Korean Journal of Ophthalmology 2025;39(2):125-133
Purpose:
This study investigated the changes in gene expression in retinal ganglion cells (RGCs) following ciliary neurotrophic factor (CNTF) treatment to elucidate the underlying mechanisms contributing to its neuroprotective effects.
Methods:
RGCs isolated from Sprague-Dawley rat pups were treated with recombinant CNTF. Gene expression was analyzed via microarray. Differentially expressed genes (DEGs) were defined as those with a fold change greater than 2 or less than –2. The DEGs were further explored using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses.
Results:
Our analysis identified 71 upregulated and 58 downregulated genes. A2m exhibited the highest increase, with a fold change of 4.97, whereas Rho displayed the most significant decrease in expression, with a fold change of –6.38. GO and KEGG pathway analyses revealed substantial involvement in sensory organ development and the phototransduction pathway.
Conclusions
This study provides new insights into the impact of CNTF on gene expression in RGCs, suggesting broader neuroprotective mechanisms that could inform future therapeutic strategies for retinal degenerative diseases. Our findings emphasize the importance of further investigation into the complex gene network responses to CNTF treatment.
2.Neuroprotective Mechanisms of Ciliary Neurotrophic Factor in Retinal Ganglion Cells: Insights from Microarray Analysis
Seungyeon LEE ; Jin-Ok CHOI ; Ahreum HWANG ; Chan Yun KIM ; Kwanghyun LEE
Korean Journal of Ophthalmology 2025;39(2):125-133
Purpose:
This study investigated the changes in gene expression in retinal ganglion cells (RGCs) following ciliary neurotrophic factor (CNTF) treatment to elucidate the underlying mechanisms contributing to its neuroprotective effects.
Methods:
RGCs isolated from Sprague-Dawley rat pups were treated with recombinant CNTF. Gene expression was analyzed via microarray. Differentially expressed genes (DEGs) were defined as those with a fold change greater than 2 or less than –2. The DEGs were further explored using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses.
Results:
Our analysis identified 71 upregulated and 58 downregulated genes. A2m exhibited the highest increase, with a fold change of 4.97, whereas Rho displayed the most significant decrease in expression, with a fold change of –6.38. GO and KEGG pathway analyses revealed substantial involvement in sensory organ development and the phototransduction pathway.
Conclusions
This study provides new insights into the impact of CNTF on gene expression in RGCs, suggesting broader neuroprotective mechanisms that could inform future therapeutic strategies for retinal degenerative diseases. Our findings emphasize the importance of further investigation into the complex gene network responses to CNTF treatment.
3.Neuroprotective Mechanisms of Ciliary Neurotrophic Factor in Retinal Ganglion Cells: Insights from Microarray Analysis
Seungyeon LEE ; Jin-Ok CHOI ; Ahreum HWANG ; Chan Yun KIM ; Kwanghyun LEE
Korean Journal of Ophthalmology 2025;39(2):125-133
Purpose:
This study investigated the changes in gene expression in retinal ganglion cells (RGCs) following ciliary neurotrophic factor (CNTF) treatment to elucidate the underlying mechanisms contributing to its neuroprotective effects.
Methods:
RGCs isolated from Sprague-Dawley rat pups were treated with recombinant CNTF. Gene expression was analyzed via microarray. Differentially expressed genes (DEGs) were defined as those with a fold change greater than 2 or less than –2. The DEGs were further explored using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses.
Results:
Our analysis identified 71 upregulated and 58 downregulated genes. A2m exhibited the highest increase, with a fold change of 4.97, whereas Rho displayed the most significant decrease in expression, with a fold change of –6.38. GO and KEGG pathway analyses revealed substantial involvement in sensory organ development and the phototransduction pathway.
Conclusions
This study provides new insights into the impact of CNTF on gene expression in RGCs, suggesting broader neuroprotective mechanisms that could inform future therapeutic strategies for retinal degenerative diseases. Our findings emphasize the importance of further investigation into the complex gene network responses to CNTF treatment.
4.Updates of Evidence-Based Nursing Practice Guidelines for Peripheral Intravenous Infusion Therapy
Ihn Sook JEONG ; Chan Mi KANG ; Kyeong Sug KIM ; Hyun Lim KIM ; Jeong Ok PARK ; Joohyun LEE ; Kyung Choon LIM ; Go Eun CHOI
Journal of Korean Clinical Nursing Research 2025;31(1):1-14
Purpose:
This study was conducted to update the practice guidelines for intravenous infusion therapy published in 2017, focusing on the most recent evidence for peripheral intravenous infusion therapy.
Methods:
The guideline update was conducted using the 22-step methodology.
Results:
The updated guidelines consist of 17 domains and 235 recommendations (including 284 sub-recommendations). The domains are as follows: general instructions (5 items), peripheral catheter selection (7), catheter insertion site selection (11), management during peripheral catheter insertion (10), post-insertion management (30), perfusion and locking (17), blood sampling via peripheral catheters(6), exchange and removal of peripheral catheters (6), infusion set management (14), add-on devices (32), complications (25), chemotherapy infusions (10), PCA infusions (7), parenteral nutrition (20), transfusion therapy (23), education (5), and documentation and reporting (7). The evidence levels for these recommendations are as follows: 27(9.5%) at level I, 3 (1.1%) at level I A/P, 118 (41.5%) at level II, and 136 (47.9%) at level III.Recommendation grades are categorized as follows: 30 (10.6%) at level A, 118 (41.5%) at level B, and 136(47.9%) at level C. Of these, 73 (25.7%) recommendations were newly developed, 49 (17.3%) underwent major revisions, and 147 (51.7%) underwent minor revisions.
Conclusion
The updated practice guideline, based on the latest evidence, is anticipated to enhance nursing practice related to peripheral intravenous infusion therapy.
5.Updates of Evidence-Based Nursing Practice Guidelines for Peripheral Intravenous Infusion Therapy
Ihn Sook JEONG ; Chan Mi KANG ; Kyeong Sug KIM ; Hyun Lim KIM ; Jeong Ok PARK ; Joohyun LEE ; Kyung Choon LIM ; Go Eun CHOI
Journal of Korean Clinical Nursing Research 2025;31(1):1-14
Purpose:
This study was conducted to update the practice guidelines for intravenous infusion therapy published in 2017, focusing on the most recent evidence for peripheral intravenous infusion therapy.
Methods:
The guideline update was conducted using the 22-step methodology.
Results:
The updated guidelines consist of 17 domains and 235 recommendations (including 284 sub-recommendations). The domains are as follows: general instructions (5 items), peripheral catheter selection (7), catheter insertion site selection (11), management during peripheral catheter insertion (10), post-insertion management (30), perfusion and locking (17), blood sampling via peripheral catheters(6), exchange and removal of peripheral catheters (6), infusion set management (14), add-on devices (32), complications (25), chemotherapy infusions (10), PCA infusions (7), parenteral nutrition (20), transfusion therapy (23), education (5), and documentation and reporting (7). The evidence levels for these recommendations are as follows: 27(9.5%) at level I, 3 (1.1%) at level I A/P, 118 (41.5%) at level II, and 136 (47.9%) at level III.Recommendation grades are categorized as follows: 30 (10.6%) at level A, 118 (41.5%) at level B, and 136(47.9%) at level C. Of these, 73 (25.7%) recommendations were newly developed, 49 (17.3%) underwent major revisions, and 147 (51.7%) underwent minor revisions.
Conclusion
The updated practice guideline, based on the latest evidence, is anticipated to enhance nursing practice related to peripheral intravenous infusion therapy.
6.Palliative Care and Hospice for Heart Failure Patients: Position Statement From the Korean Society of Heart Failure
Seung-Mok LEE ; Hae-Young LEE ; Shin Hye YOO ; Hyun-Jai CHO ; Jong-Chan YOUN ; Seong-Mi PARK ; Jin-Ok JEONG ; Min-Seok KIM ; Chi Young SHIM ; Jin Joo PARK ; Kye Hun KIM ; Eung Ju KIM ; Jeong Hoon YANG ; Jae Yeong CHO ; Sang-Ho JO ; Kyung-Kuk HWANG ; Ju-Hee LEE ; In-Cheol KIM ; Gi Beom KIM ; Jung Hyun CHOI ; Sung-Hee SHIN ; Wook-Jin CHUNG ; Seok-Min KANG ; Myeong Chan CHO ; Dae-Gyun PARK ; Byung-Su YOO
International Journal of Heart Failure 2025;7(1):32-46
Heart failure (HF) is a major cause of mortality and morbidity in South Korea, imposing substantial physical, emotional, and financial burdens on patients and society. Despite the high burden of symptom and complex care needs of HF patients, palliative care and hospice services remain underutilized in South Korea due to cultural, institutional, and knowledge-related barriers. This position statement from the Korean Society of Heart Failure emphasizes the need for integrating palliative and hospice care into HF management to improve quality of life and support holistic care for patients and their families. By clarifying the role of palliative care in HF and proposing practical referral criteria, this position statement aims to bridge the gap between HF and palliative care services in South Korea, ultimately improving patient-centered outcomes and aligning treatment with the goals and values of HF patients.
7.Updates of Evidence-Based Nursing Practice Guidelines for Peripheral Intravenous Infusion Therapy
Ihn Sook JEONG ; Chan Mi KANG ; Kyeong Sug KIM ; Hyun Lim KIM ; Jeong Ok PARK ; Joohyun LEE ; Kyung Choon LIM ; Go Eun CHOI
Journal of Korean Clinical Nursing Research 2025;31(1):1-14
Purpose:
This study was conducted to update the practice guidelines for intravenous infusion therapy published in 2017, focusing on the most recent evidence for peripheral intravenous infusion therapy.
Methods:
The guideline update was conducted using the 22-step methodology.
Results:
The updated guidelines consist of 17 domains and 235 recommendations (including 284 sub-recommendations). The domains are as follows: general instructions (5 items), peripheral catheter selection (7), catheter insertion site selection (11), management during peripheral catheter insertion (10), post-insertion management (30), perfusion and locking (17), blood sampling via peripheral catheters(6), exchange and removal of peripheral catheters (6), infusion set management (14), add-on devices (32), complications (25), chemotherapy infusions (10), PCA infusions (7), parenteral nutrition (20), transfusion therapy (23), education (5), and documentation and reporting (7). The evidence levels for these recommendations are as follows: 27(9.5%) at level I, 3 (1.1%) at level I A/P, 118 (41.5%) at level II, and 136 (47.9%) at level III.Recommendation grades are categorized as follows: 30 (10.6%) at level A, 118 (41.5%) at level B, and 136(47.9%) at level C. Of these, 73 (25.7%) recommendations were newly developed, 49 (17.3%) underwent major revisions, and 147 (51.7%) underwent minor revisions.
Conclusion
The updated practice guideline, based on the latest evidence, is anticipated to enhance nursing practice related to peripheral intravenous infusion therapy.
8.Neuroprotective Mechanisms of Ciliary Neurotrophic Factor in Retinal Ganglion Cells: Insights from Microarray Analysis
Seungyeon LEE ; Jin-Ok CHOI ; Ahreum HWANG ; Chan Yun KIM ; Kwanghyun LEE
Korean Journal of Ophthalmology 2025;39(2):125-133
Purpose:
This study investigated the changes in gene expression in retinal ganglion cells (RGCs) following ciliary neurotrophic factor (CNTF) treatment to elucidate the underlying mechanisms contributing to its neuroprotective effects.
Methods:
RGCs isolated from Sprague-Dawley rat pups were treated with recombinant CNTF. Gene expression was analyzed via microarray. Differentially expressed genes (DEGs) were defined as those with a fold change greater than 2 or less than –2. The DEGs were further explored using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses.
Results:
Our analysis identified 71 upregulated and 58 downregulated genes. A2m exhibited the highest increase, with a fold change of 4.97, whereas Rho displayed the most significant decrease in expression, with a fold change of –6.38. GO and KEGG pathway analyses revealed substantial involvement in sensory organ development and the phototransduction pathway.
Conclusions
This study provides new insights into the impact of CNTF on gene expression in RGCs, suggesting broader neuroprotective mechanisms that could inform future therapeutic strategies for retinal degenerative diseases. Our findings emphasize the importance of further investigation into the complex gene network responses to CNTF treatment.
9.Updates of Evidence-Based Nursing Practice Guidelines for Peripheral Intravenous Infusion Therapy
Ihn Sook JEONG ; Chan Mi KANG ; Kyeong Sug KIM ; Hyun Lim KIM ; Jeong Ok PARK ; Joohyun LEE ; Kyung Choon LIM ; Go Eun CHOI
Journal of Korean Clinical Nursing Research 2025;31(1):1-14
Purpose:
This study was conducted to update the practice guidelines for intravenous infusion therapy published in 2017, focusing on the most recent evidence for peripheral intravenous infusion therapy.
Methods:
The guideline update was conducted using the 22-step methodology.
Results:
The updated guidelines consist of 17 domains and 235 recommendations (including 284 sub-recommendations). The domains are as follows: general instructions (5 items), peripheral catheter selection (7), catheter insertion site selection (11), management during peripheral catheter insertion (10), post-insertion management (30), perfusion and locking (17), blood sampling via peripheral catheters(6), exchange and removal of peripheral catheters (6), infusion set management (14), add-on devices (32), complications (25), chemotherapy infusions (10), PCA infusions (7), parenteral nutrition (20), transfusion therapy (23), education (5), and documentation and reporting (7). The evidence levels for these recommendations are as follows: 27(9.5%) at level I, 3 (1.1%) at level I A/P, 118 (41.5%) at level II, and 136 (47.9%) at level III.Recommendation grades are categorized as follows: 30 (10.6%) at level A, 118 (41.5%) at level B, and 136(47.9%) at level C. Of these, 73 (25.7%) recommendations were newly developed, 49 (17.3%) underwent major revisions, and 147 (51.7%) underwent minor revisions.
Conclusion
The updated practice guideline, based on the latest evidence, is anticipated to enhance nursing practice related to peripheral intravenous infusion therapy.
10.Neuroprotective Mechanisms of Ciliary Neurotrophic Factor in Retinal Ganglion Cells: Insights from Microarray Analysis
Seungyeon LEE ; Jin-Ok CHOI ; Ahreum HWANG ; Chan Yun KIM ; Kwanghyun LEE
Korean Journal of Ophthalmology 2025;39(2):125-133
Purpose:
This study investigated the changes in gene expression in retinal ganglion cells (RGCs) following ciliary neurotrophic factor (CNTF) treatment to elucidate the underlying mechanisms contributing to its neuroprotective effects.
Methods:
RGCs isolated from Sprague-Dawley rat pups were treated with recombinant CNTF. Gene expression was analyzed via microarray. Differentially expressed genes (DEGs) were defined as those with a fold change greater than 2 or less than –2. The DEGs were further explored using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses.
Results:
Our analysis identified 71 upregulated and 58 downregulated genes. A2m exhibited the highest increase, with a fold change of 4.97, whereas Rho displayed the most significant decrease in expression, with a fold change of –6.38. GO and KEGG pathway analyses revealed substantial involvement in sensory organ development and the phototransduction pathway.
Conclusions
This study provides new insights into the impact of CNTF on gene expression in RGCs, suggesting broader neuroprotective mechanisms that could inform future therapeutic strategies for retinal degenerative diseases. Our findings emphasize the importance of further investigation into the complex gene network responses to CNTF treatment.

Result Analysis
Print
Save
E-mail