1.The Anterior Insula and its Projection to the Prelimbic Cortex are Involved in the Regulation of 5-HT-Induced Itch.
Juan YAO ; Xuan LI ; Guang-Yan WU ; Bing WU ; Jun-Hui LONG ; Pu-Jun WANG ; Shu-Lei LIU ; Jie GAO ; Jian-Feng SUI
Neuroscience Bulletin 2023;39(12):1807-1822
Itch is an unpleasant sensation that urges people and animals to scratch. Neuroimaging studies on itch have yielded extensive correlations with diverse cortical and subcortical regions, including the insular lobe. However, the role and functional specificity of the insular cortex (IC) and its subdivisions in itch mediation remains unclear. Here, we demonstrated by immunohistochemistry and fiber photometry tests, that neurons in both the anterior insular cortex (AIC) and the posterior insular cortex (PIC) are activated during acute itch processes. Pharmacogenetic experiments revealed that nonselective inhibition of global AIC neurons, or selective inhibition of the activity of glutaminergic neurons in the AIC, reduced the scratching behaviors induced by intradermal injection of 5-hydroxytryptamine (5-HT), but not those induced by compound 48/80. However, both nonselective inhibition of global PIC neurons and selective inhibition of glutaminergic neurons in the PIC failed to affect the itching-scratching behaviors induced by either 5-HT or compound 48/80. In addition, pharmacogenetic inhibition of AIC glutaminergic neurons effectively blocked itch-associated conditioned place aversion behavior, and inhibition of AIC glutaminergic neurons projecting to the prelimbic cortex significantly suppressed 5-HT-evoked scratching. These findings provide preliminary evidence that the AIC is involved, at least partially via aversive emotion mediation, in the regulation of 5-HT-, but not compound 48/80-induced itch.
Humans
;
Animals
;
Serotonin
;
Insular Cortex
;
Pruritus/chemically induced*
;
Cerebral Cortex/physiology*
;
Neurons
2.An Anterior Cingulate Cortex-to-Midbrain Projection Controls Chronic Itch in Mice.
Ting-Ting ZHANG ; Su-Shan GUO ; Hui-Ying WANG ; Qi JING ; Xin YI ; Zi-Han HU ; Xin-Ren YU ; Tian-Le XU ; Ming-Gang LIU ; Xuan ZHAO
Neuroscience Bulletin 2023;39(5):793-807
Itch is an unpleasant sensation that provokes the desire to scratch. While acute itch serves as a protective system to warn the body of external irritating agents, chronic itch is a debilitating but poorly-treated clinical disease leading to repetitive scratching and skin lesions. However, the neural mechanisms underlying the pathophysiology of chronic itch remain mysterious. Here, we identified a cell type-dependent role of the anterior cingulate cortex (ACC) in controlling chronic itch-related excessive scratching behaviors in mice. Moreover, we delineated a neural circuit originating from excitatory neurons of the ACC to the ventral tegmental area (VTA) that was critically involved in chronic itch. Furthermore, we demonstrate that the ACC→VTA circuit also selectively modulated histaminergic acute itch. Finally, the ACC neurons were shown to predominantly innervate the non-dopaminergic neurons of the VTA. Taken together, our findings uncover a cortex-midbrain circuit for chronic itch-evoked scratching behaviors and shed novel insights on therapeutic intervention.
Mice
;
Animals
;
Gyrus Cinguli/physiology*
;
Pruritus/pathology*
;
Mesencephalon
;
Cerebral Cortex/pathology*
;
Neurons/pathology*
3.Inhibition of Foxp4 Disrupts Cadherin-based Adhesion of Radial Glial Cells, Leading to Abnormal Differentiation and Migration of Cortical Neurons in Mice.
Xue LI ; Shimin ZOU ; Xiaomeng TU ; Shishuai HAO ; Tian JIANG ; Jie-Guang CHEN
Neuroscience Bulletin 2023;39(7):1131-1145
Heterozygous loss-of-function variants of FOXP4 are associated with neurodevelopmental disorders (NDDs) that exhibit delayed speech development, intellectual disability, and congenital abnormalities. The etiology of NDDs is unclear. Here we found that FOXP4 and N-cadherin are expressed in the nuclei and apical end-feet of radial glial cells (RGCs), respectively, in the mouse neocortex during early gestation. Knockdown or dominant-negative inhibition of Foxp4 abolishes the apical condensation of N-cadherin in RGCs and the integrity of neuroepithelium in the ventricular zone (VZ). Inhibition of Foxp4 leads to impeded radial migration of cortical neurons and ectopic neurogenesis from the proliferating VZ. The ectopic differentiation and deficient migration disappear when N-cadherin is over-expressed in RGCs. The data indicate that Foxp4 is essential for N-cadherin-based adherens junctions, the loss of which leads to periventricular heterotopias. We hypothesize that FOXP4 variant-associated NDDs may be caused by disruption of the adherens junctions and malformation of the cerebral cortex.
Mice
;
Animals
;
Ependymoglial Cells/physiology*
;
Cadherins
;
Neurons/metabolism*
;
Cerebral Cortex/metabolism*
;
Cell Differentiation
;
Cell Movement
4.Projection-Specific Heterogeneity of the Axon Initial Segment of Pyramidal Neurons in the Prelimbic Cortex.
Ankang HU ; Rui ZHAO ; Baihui REN ; Yang LI ; Jiangteng LU ; Yilin TAI
Neuroscience Bulletin 2023;39(7):1050-1068
The axon initial segment (AIS) is a highly specialized axonal compartment where the action potential is initiated. The heterogeneity of AISs has been suggested to occur between interneurons and pyramidal neurons (PyNs), which likely contributes to their unique spiking properties. However, whether the various characteristics of AISs can be linked to specific PyN subtypes remains unknown. Here, we report that in the prelimbic cortex (PL) of the mouse, two types of PyNs with axon projections either to the contralateral PL or to the ipsilateral basal lateral amygdala, possess distinct AIS properties reflected by morphology, ion channel expression, action potential initiation, and axo-axonic synaptic inputs from chandelier cells. Furthermore, projection-specific AIS diversity is more prominent in the superficial layer than in the deep layer. Thus, our study reveals the cortical layer- and axon projection-specific heterogeneity of PyN AISs, which may endow the spiking of various PyN types with exquisite modulation.
Mice
;
Animals
;
Axon Initial Segment
;
Synapses/physiology*
;
Pyramidal Cells/physiology*
;
Cerebral Cortex
;
Axons/physiology*
5.Design and preliminary application of outdoor flying pigeon-robot.
Hao WANG ; Shaokang WANG ; Zhaocheng QIU ; Qi ZHANG ; Shuai XU
Journal of Biomedical Engineering 2022;39(6):1209-1217
Control at beyond-visual ranges is of great significance to animal-robots with wide range motion capability. For pigeon-robots, such control can be done by the way of onboard preprogram, but not constitute a closed-loop yet. This study designed a new control system for pigeon-robots, which integrated the function of trajectory monitoring to that of brain stimulation. It achieved the closed-loop control in turning or circling by estimating pigeons' flight state instantaneously and the corresponding logical regulation. The stimulation targets located at the formation reticularis medialis mesencephali (FRM) in the left and right brain, for the purposes of left- and right-turn control, respectively. The stimulus was characterized by the waveform mimicking the nerve cell membrane potential, and was activated intermittently. The wearable control unit weighted 11.8 g totally. The results showed a 90% success rate by the closed-loop control in pigeon-robots. It was convenient to obtain the wing shape during flight maneuver, by equipping a pigeon-robot with a vivo camera. It was also feasible to regulate the evolution of pigeon flocks by the pigeon-robots at different hierarchical level. All of these lay the groundwork for the application of pigeon-robots in scientific researches.
Animals
;
Columbidae/physiology*
;
Robotics/methods*
;
Cerebral Cortex
6.Neuroligins Differentially Mediate Subtype-Specific Synapse Formation in Pyramidal Neurons and Interneurons.
Qiang-Qiang XIA ; Jing XU ; Tai-Lin LIAO ; Jie YU ; Lei SHI ; Jun XIA ; Jian-Hong LUO ; Junyu XU
Neuroscience Bulletin 2019;35(3):497-506
Neuroligins (NLs) are postsynaptic cell-adhesion proteins that play important roles in synapse formation and the excitatory-inhibitory balance. They have been associated with autism in both human genetic and animal model studies, and affect synaptic connections and synaptic plasticity in several brain regions. Yet current research mainly focuses on pyramidal neurons, while the function of NLs in interneurons remains to be understood. To explore the functional difference among NLs in the subtype-specific synapse formation of both pyramidal neurons and interneurons, we performed viral-mediated shRNA knockdown of NLs in cultured rat cortical neurons and examined the synapses in the two major types of neurons. Our results showed that in both types of neurons, NL1 and NL3 were involved in excitatory synapse formation, and NL2 in GABAergic synapse formation. Interestingly, NL1 affected GABAergic synapse formation more specifically than NL3, and NL2 affected excitatory synapse density preferentially in pyramidal neurons. In summary, our results demonstrated that different NLs play distinct roles in regulating the development and balance of excitatory and inhibitory synapses in pyramidal neurons and interneurons.
Animals
;
Cell Adhesion Molecules, Neuronal
;
physiology
;
Cells, Cultured
;
Cerebral Cortex
;
embryology
;
physiology
;
GABAergic Neurons
;
physiology
;
Interneurons
;
physiology
;
Membrane Proteins
;
physiology
;
Nerve Tissue Proteins
;
physiology
;
Protein Isoforms
;
physiology
;
Pyramidal Cells
;
physiology
;
Rats, Sprague-Dawley
;
Synapses
;
physiology
7.Effects of endurance exercise on synaptic plasticity in cerebral cortex of aged rats and related regulatory mechanism.
Wen-Feng LIU ; Shao-Peng LIU ; Rang FU ; Zhi-Yuan WANG ; He-Yu KUANG ; Yan XIA ; Chang-Fa TANG
Chinese Journal of Applied Physiology 2019;35(4):339-345
OBJECTIVE:
To understand and analyze the rules of endurance exercise on the cerebral cortex adaptive mechanism in aged rats.
METHODS:
In this study, 3-month-old (n=20), 13-month-old (n=24) and 23-month-old (n=24) specific-pathogen free (SPF) male Sprague-Dawley Rat (SD) rats were divided into young (Y-SED), middle-aged (M-SED) and old-aged (O-SED) sedentary control group, and the corresponding Y-EX, M-EX and O-EX in the endurance exercise runner group. The 10-weeks of regular moderate-intensity aerobic exercise intervention were carried out in the endurance exercise runner group. The exercise mode is treadmill exercise (slope 0), and the exercise intensity gradually increases from 60%~65% of the maximum oxygen consumption (V·O) to 70%~75%, and the exercise time is 10 weeks. Hematoxylin and eosin (HE) staining was used to detect age-related morphological changes. The expressions of superoxide dismutase(SOD) and brain-derived neurotrophic factor (BDNF) and the expressions of synapsin 1 (SYN1) and Ca/calmodulin- dependent protein kinases IIα (CaMK IIα) / AMP-activated protein kinase α1(AMPKα1) / mammalian target of rapamycin (mTOR) pathway -related genes were detected.
RESULTS:
The cerebral cortex structure of the rats in each group showed age-related aging changes, the expression of SOD in the cortex showed a gradual decline, the expression of BDNF showed an age-increasing trend, and the expression levels of SYN1 and CaMK IIα were increased with age. The changes in AMPKα1 and SirT2 and IP3R, AKT1 and mTOR mRNA levels were increased slightly in middle-aged rats and decreased in aged rats. Compared with the rats in each sedentary control group, the nucleus of the cerebral cortex was tightly arranged and the number of nuclei observed under the microscope was increased significantly in each exercise group. Exercise promoted the expressions of SOD, BDNF and synaptophysin SYN1 in the cortex of rats, and the expression levels of SOD and BDNF in aged rats were up-regulated significantly (P< 0.01). The expression level of SYN1 in rats was up-regulated significantly (P<0.05) in the young and aged rats. The expression of CaMK IIα in the cortex of middle-aged and aged rats was up-regulated (P<0.01), while the expression level of CaMK IIα in young rats was down-regulated (P<0.01). Exercise could up-regulate the expression level of AMPKα1 in the cortex of young rats (P< 0.05), but not in middle-aged and old-age rats. Exercise could up-regulate the expression of SirT2 in the cortex of rats in all age groups (P<0.05). Exercise up-regulated the expression of phosphoinositide 3-kinase (IP3R)/ protein kinase B 1(AKT1) /mTOR in the cortex of rats, among which young IP3R was significantly up-regulated (P<0.01) in the young group, mTOR was significantly up-regulated in young and middle-aged group (P<0.01), and mTOR was also significantly up-regulated in the aged group (P<0.05).
CONCLUSION
Endurance exercise up-regulates BDNF expression, regulates CaMKIIα signaling, activates AMPK signaling pathway and IP3R / AKT1 / mTOR signaling pathway, and improves synaptic plasticity in the cortex.
Age Factors
;
Animals
;
Cerebral Cortex
;
physiology
;
Male
;
Neuronal Plasticity
;
Physical Conditioning, Animal
;
Physical Endurance
;
Rats
;
Rats, Sprague-Dawley
;
Signal Transduction
8.Laminar Distribution of Neurochemically-Identified Interneurons and Cellular Co-expression of Molecular Markers in Epileptic Human Cortex.
Qiyu ZHU ; Wei KE ; Quansheng HE ; Xiongfei WANG ; Rui ZHENG ; Tianfu LI ; Guoming LUAN ; Yue-Sheng LONG ; Wei-Ping LIAO ; Yousheng SHU
Neuroscience Bulletin 2018;34(6):992-1006
Inhibitory GABAergic interneurons are fundamental elements of cortical circuits and play critical roles in shaping network activity. Dysfunction of interneurons can lead to various brain disorders, including epilepsy, schizophrenia, and anxiety. Based on the electrophysiological properties, cell morphology, and molecular identity, interneurons could be classified into various subgroups. In this study, we investigated the density and laminar distribution of different interneuron types and the co-expression of molecular markers in epileptic human cortex. We found that parvalbumin (PV) and somatostatin (SST) neurons were distributed in all cortical layers except layer I, while tyrosine hydroxylase (TH) and neuropeptide Y (NPY) were abundant in the deep layers and white matter. Cholecystokinin (CCK) neurons showed a high density in layers IV and VI. Neurons with these markers constituted ~7.2% (PV), 2.6% (SST), 0.5% (TH), 0.5% (NPY), and 4.4% (CCK) of the gray-matter neuron population. Double- and triple-labeling revealed that NPY neurons were also SST-immunoreactive (97.7%), and TH neurons were more likely to express SST (34.2%) than PV (14.6%). A subpopulation of CCK neurons (28.0%) also expressed PV, but none contained SST. Together, these results revealed the density and distribution patterns of different interneuron populations and the overlap between molecular markers in epileptic human cortex.
Adolescent
;
Adult
;
Brain Chemistry
;
genetics
;
physiology
;
Cerebral Cortex
;
metabolism
;
pathology
;
Child
;
Cholecystokinin
;
metabolism
;
Epilepsy
;
etiology
;
pathology
;
Female
;
Gene Expression Regulation
;
physiology
;
Humans
;
Interneurons
;
metabolism
;
Male
;
Middle Aged
;
Neuropeptide Y
;
metabolism
;
Parvalbumins
;
metabolism
;
Phosphopyruvate Hydratase
;
metabolism
;
Somatostatin
;
metabolism
;
Tyrosine 3-Monooxygenase
;
metabolism
;
Young Adult
9.Facial Expression Enhances Emotion Perception Compared to Vocal Prosody: Behavioral and fMRI Studies.
Heming ZHANG ; Xuhai CHEN ; Shengdong CHEN ; Yansong LI ; Changming CHEN ; Quanshan LONG ; Jiajin YUAN
Neuroscience Bulletin 2018;34(5):801-815
Facial and vocal expressions are essential modalities mediating the perception of emotion and social communication. Nonetheless, currently little is known about how emotion perception and its neural substrates differ across facial expression and vocal prosody. To clarify this issue, functional MRI scans were acquired in Study 1, in which participants were asked to discriminate the valence of emotional expression (angry, happy or neutral) from facial, vocal, or bimodal stimuli. In Study 2, we used an affective priming task (unimodal materials as primers and bimodal materials as target) and participants were asked to rate the intensity, valence, and arousal of the targets. Study 1 showed higher accuracy and shorter response latencies in the facial than in the vocal modality for a happy expression. Whole-brain analysis showed enhanced activation during facial compared to vocal emotions in the inferior temporal-occipital regions. Region of interest analysis showed a higher percentage signal change for facial than for vocal anger in the superior temporal sulcus. Study 2 showed that facial relative to vocal priming of anger had a greater influence on perceived emotion for bimodal targets, irrespective of the target valence. These findings suggest that facial expression is associated with enhanced emotion perception compared to equivalent vocal prosodies.
Adult
;
Brain Mapping
;
methods
;
Cerebral Cortex
;
diagnostic imaging
;
physiology
;
Emotions
;
physiology
;
Facial Expression
;
Facial Recognition
;
physiology
;
Female
;
Humans
;
Magnetic Resonance Imaging
;
Psychomotor Performance
;
physiology
;
Social Perception
;
Speech Perception
;
physiology
;
Young Adult
10.Cortical Representation of Pain and Touch: Evidence from Combined Functional Neuroimaging and Electrophysiology in Non-human Primates.
Neuroscience Bulletin 2018;34(1):165-177
Human functional MRI studies in acute and various chronic pain conditions have revolutionized how we view pain, and have led to a new theory that complex multi-dimensional pain experience (sensory-discriminative, affective/motivational, and cognitive) is represented by concurrent activity in widely-distributed brain regions (termed a network or pain matrix). Despite these breakthrough discoveries, the specific functions proposed for these regions remain elusive, because detailed electrophysiological characterizations of these regions in the primate brain are lacking. To fill in this knowledge gap, we have studied the cortical areas around the central and lateral sulci of the non-human primate brain with combined submillimeter resolution functional imaging (optical imaging and fMRI) and intracranial electrophysiological recording. In this mini-review, I summarize and present data showing that the cortical circuitry engaged in nociceptive processing is much more complex than previously recognized. Electrophysiological evidence supports the engagement of a distinct nociceptive-processing network within SI (i.e., areas 3a, 3b, 1 and 2), SII, and other areas along the lateral sulcus. Deafferentation caused by spinal cord injury profoundly alters the relationships between fMRI and electrophysiological signals. This finding has significant implications for using fMRI to study chronic pain conditions involving deafferentation in humans.
Animals
;
Cerebral Cortex
;
diagnostic imaging
;
physiopathology
;
Humans
;
Pain
;
diagnostic imaging
;
pathology
;
physiopathology
;
Primates
;
Touch
;
physiology

Result Analysis
Print
Save
E-mail