1.Cortical Inflammation is Increased in a DSS-Induced Colitis Mouse Model.
Ying HAN ; Tong ZHAO ; Xiang CHENG ; Ming ZHAO ; Sheng-Hui GONG ; Yong-Qi ZHAO ; Hai-Tao WU ; Ming FAN ; Ling-Ling ZHU
Neuroscience Bulletin 2018;34(6):1058-1066
While inflammatory bowel disease (IBD) might be a risk factor in the development of brain dysfunctions, the underlying mechanisms are largely unknown. Here, mice were treated with 5% dextran sodium sulfate (DSS) in drinking water and sacrificed on day 7. The serum level of IL-6 increased, accompanied by elevation of the IL-6 and TNF-α levels in cortical tissue. However, the endotoxin concentration in plasma and brain of mice with DSS-induced colitis showed a rising trend, but with no significant difference. We also found significant activation of microglial cells and reduction in occludin and claudin-5 expression in the brain tissue after DSS-induced colitis. These results suggested that DSS-induced colitis increases systemic inflammation which then results in cortical inflammation via up-regulation of serum cytokines. Here, we provide new information on the impact of colitis on the outcomes of cortical inflammation.
Animals
;
Calcium-Binding Proteins
;
metabolism
;
Caspase 3
;
metabolism
;
Cerebral Cortex
;
pathology
;
Claudin-5
;
metabolism
;
Colitis
;
chemically induced
;
complications
;
pathology
;
Cytokines
;
genetics
;
metabolism
;
Dextran Sulfate
;
toxicity
;
Disease Models, Animal
;
Encephalitis
;
etiology
;
Gene Expression Regulation
;
drug effects
;
Mice
;
Microfilament Proteins
;
metabolism
;
Occludin
;
metabolism
;
Polysaccharides
;
blood
;
toxicity
;
Time Factors
2.Protective effect of histone acetylation against cortical injury in neonatal rats.
Ji-Chong HUANG ; Ya-Fei LI ; Feng-Yan ZHAO ; Yi QU ; De-Zhi MU
Chinese Journal of Contemporary Pediatrics 2017;19(1):81-87
OBJECTIVETo investigate the protective effect of histone acetylation against hypoxic-ischemic cortical injury in neonatal rats.
METHODSA total of 90 neonatal rats aged 3 days were divided into three groups: sham-operation, cortical injury model, and sodium butyrate (a histone deacetylase inhibitor) treatment. The rats in the model and the sodium butyrate treatment groups were intraperitoneally injected with lipopolysaccharide (0.05 mg/kg), and then right common carotid artery ligation was performed 2 hours later and the rats were put in a hypoxic chamber (oxygen concentration 6.5%) for 90 minutes. The rats in the sham-operation group were intraperitoneally injected with normal saline and the right common carotid artery was only separated and exposed without ligation or hypoxic treatment. The rats in the sodium butyrate treatment group were intraperitoneally injected with sodium butyrate (300 mg/kg) immediately after establishment of the cortical injury model once a day for 7 days. Those in the sham-operation and the model groups were injected with the same volume of normal saline. At 7 days after establishment of the model, Western blot was used to measure the protein expression of histone H3 (HH3), acetylated histone H3 (AH3), B-cell lymphoma/leukemia-2 (Bcl-2), Bcl-2-associated X protein (BAX), cleaved caspase-3 (CC3), and brain-derived neurotrophic factor (BDNF). Immunofluorescence assay was used to measure the expression of 5-bromo-2'-deoxyuridine (BrdU) as the cortex cell proliferation index.
RESULTSThe sodium butyrate treatment group had a significantly lower HH3/AH3 ratio than the model group (P<0.05), which suggested that the sodium butyrate treatment group had increased acetylation of HH3. Compared with the model group, the sodium butyrate treatment group had a significant increase in Bcl-2/Bax ratio, a significant reduction in CC3 expression, and a significant increase in BDNF expression (P<0.05). The sodium butyrate treatment group had a significant increase in the number of BrdU-positive cells in the cortex compared with the model group (P<0.05), and BrdU was mainly expressed in the neurons.
CONCLUSIONSIncreased histone acetylation may protect neonatal rats against cortical injury by reducing apoptosis and promoting regeneration of neurons. The mechanism may be associated with increased expression of BDNF.
Acetylation ; Animals ; Animals, Newborn ; Apoptosis ; drug effects ; Brain-Derived Neurotrophic Factor ; analysis ; Butyric Acid ; therapeutic use ; Cerebral Cortex ; pathology ; Female ; Histones ; metabolism ; Male ; Rats ; Rats, Sprague-Dawley
3.Acrylamide-induced Subacute Neurotoxic Effects on the Cerebral Cortex and Cerebellum at the Synapse Level in Rats.
Bin ZHANG ; Hua SHAO ; Xiu Hui WANG ; Xiao CHEN ; Zhong Sheng LI ; Peng CAO ; Dan ZHU ; Yi Guang YANG ; Jing Wei XIAO ; Bin LI
Biomedical and Environmental Sciences 2017;30(6):432-443
OBJECTIVETo investigate acrylamide (ACR)-induced subacute neurotoxic effects on the central nervous system (CNS) at the synapse level in rats.
METHODSThirty-six Sprague Dawley (SD) rats were randomized into three groups, (1) a 30 mg/kg ACR-treated group, (2) a 50 mg/kg ACR-treated group, and (3) a normal saline (NS)-treated control group. Body weight and neurological changes were recorded each day. At the end of the test, cerebral cortex and cerebellum tissues were harvested and viewed using light and electron microscopy. Additionally, the expression of Synapsin I and P-Synapsin I in the cerebral cortex and cerebellum were investigated.
RESULTSThe 50 mg/kg ACR-treated rats showed a significant reduction in body weight compared with untreated individuals (P < 0.05). Rats exposed to ACR showed a significant increase in gait scores compared with the NS control group (P < 0.05). Histological examination indicated neuronal structural damage in the 50 mg/kg ACR treatment group. The active zone distance (AZD) and the nearest neighbor distance (NND) of synaptic vesicles in the cerebral cortex and cerebellum were increased in both the 30 mg/kg and 50 mg/kg ACR treatment groups. The ratio of the distribution of synaptic vesicles in the readily releasable pool (RRP) was decreased. Furthermore, the expression levels of Synapsin I and P-Synapsin I in the cerebral cortex and cerebellum were decreased in both the 30 mg/kg and 50 mg/kg ACR treatment groups.
CONCLUSIONSubacute ACR exposure contributes to neuropathy in the rat CNS. Functional damage of synaptic proteins and vesicles may be a mechanism of ACR neurotoxicity.
Acrylamide ; toxicity ; Animals ; Cerebellum ; cytology ; drug effects ; Cerebral Cortex ; cytology ; drug effects ; Drug Administration Schedule ; Gait ; Gene Expression Regulation ; drug effects ; Male ; Neurons ; drug effects ; Neurotoxicity Syndromes ; pathology ; Rats ; Rats, Sprague-Dawley ; Synapses ; drug effects ; Synapsins ; genetics ; metabolism ; Synaptic Vesicles ; drug effects ; physiology ; Weight Loss ; drug effects
4.Effects of Shenfu injection on calreticulin expression and neuronal apoptosis in the cerebral cortex of neonatal rats with hypoxic-ischemic brain damage.
Wen-Qiang LIU ; Yan XU ; Ai-Min HAN ; Qian-Qian YANG ; Jun WANG
Chinese Journal of Contemporary Pediatrics 2015;17(3):281-286
OBJECTIVETo examine the expression of calreticulin (CRT) and the changes of intracellular free calcium and neuronal apoptosis in the cerebral cortex of neonatal rats with hypoxic-ischemic brain damage (HIBD), and to investigate the intervention effects of Shenfu injection.
METHODSSeven-day-old rats were randomly assigned to three groups: control, hypoxic-ischemia (HI) and Shenfu-treated. Each group (n=50) was subdivided into 5 groups sacrificed at 3, 6, 12, 24 and 72 hours. Rat models of HIBD were prepared according to the Rice's method. Rats in the control group only underwent the separation of right common carotidartery. Shenfu injection was administered by intraperitoneal injections right after HI insults and then once daily at a dosage of 10 mL/kg for 3 days in the Shenfu-treated group. The expression of CRT in the cerebral cortex was detected by RT-PCR and Western blot. The free calcium concentrations were determined under a fluorescent microscope. The apoptosis rate was measured by the flow cytometry.
RESULTSCompared with the control group, the expression levels of CRT in the HI and the Shenfu-treated groups were obviously up-regulated (P<0.05), and the expression levels of CRT in the Shenfu-treated group were notably higher than those in the HI group (P<0.05) at all time points. The concentrations of intracellular free calcium and the apoptosis rate of neurons in the cerebral cortex in the Shenfu-treated group were significantly reduced compared with those in the HI group (P<0.05), but increased significantly compared with those in the control group at all time points (P<0.05).
CONCLUSIONSShenfu injection may have neuroprotective effects against HIBD by up-regulation of CRT expression and relief of calcium overload.
Animals ; Animals, Newborn ; Apoptosis ; drug effects ; Calcium ; metabolism ; Calreticulin ; analysis ; Cerebral Cortex ; metabolism ; pathology ; Drugs, Chinese Herbal ; pharmacology ; Female ; Hypoxia-Ischemia, Brain ; drug therapy ; metabolism ; pathology ; Injections ; Male ; Neurons ; drug effects ; Rats, Sprague-Dawley
5.Study on differentially expressed proteins of effect of kudiezi injection on cerebral cortexin rats with cerebral ischemic stroke and heat toxin syndrome.
Feng-Li WANG ; Yun-Ling ZHANG ; Xue-Mei LIU ; Xin-Xiang WANG ; Hong ZHENG ; Xin-Yang ZHANG ; Fang GAO ; Ting YAO
China Journal of Chinese Materia Medica 2014;39(10):1874-1879
This study is to investigate the modulation of Kudiezi (KDZ) injection on differential protein expression in cerebral cortex of rats with cerebral ischemic stroke and heat toxin syndrome established by intraperitoneal injection of carrageenan and middle cerebral artery occlusion (MCAO) methods. According to random number table rats were divided into three groups: drug group, model group and sham group. The tripheye tetrazolium chloride (TTC) staining and HE staining were used to observe brain tissue injury of rats. After therapeutic intervention with above drug for seventy-two hours, the level of differential protein expression was analyzed by two-dimensional gel electrophoresis (2-DE). The results show that there are differential protein expressions between cerebral ischemic stroke and heat toxin syndrome rats and sham rats. Furthermore, as a Chinese medicine injection with effect of clearing heat, resolving toxin and dredging collaterals, KDZ injection can decrease alleviate morphological changes of cerebral ischemia, regulate the levels of some differential proteins expression.
Animals
;
Brain Ischemia
;
drug therapy
;
genetics
;
metabolism
;
pathology
;
Cerebral Cortex
;
drug effects
;
metabolism
;
pathology
;
Drugs, Chinese Herbal
;
administration & dosage
;
Gene Expression
;
drug effects
;
Humans
;
Male
;
Rats
;
Rats, Sprague-Dawley
;
Stroke
;
drug therapy
;
genetics
;
metabolism
;
pathology
6.Effect of acetamide on histopathology in cerebral cortex of rats with tetramine poisoning.
Xia WANG ; Hengbo GAO ; Dongqi YAO ; Yingping TIAN ; Jianling SU ; Hongshun ZHANG ; Chengye SUN ; Hanwen SHI
Chinese Journal of Industrial Hygiene and Occupational Diseases 2014;32(4):289-292
OBJECTIVETo observe the effect of different doses of acetamide on the histopathology in the cerebral cortex of rats with tetramine (TET) poisoning and to provide a basis for the treatment of fluoroacetamide poisoning with acetamide.
METHODSEighty clean Sprague-Dawley rats were randomly divided into five groups: saline control group,dimethylsulfoxide water solution control group,TET poisoning group, acetamide (2.88 g/kg/d) treatment group, and acetamide (5.68 g/kg/d) treatment group, with 16 rats in each group. Rats in the poisoning group and treatment groups were poisoned with TET by intragastric administration after fasting; then, saline was injected intramuscularly into rats of the poisoning group, and different doses of acetamide were injected intramuscularly into rats of treatment groups; the course of treatment was 5 d. At 3 h, 12 h, 48 h, and 7 d after treatment, the cerebral cortex was harvested from rats in each group, and the histopathological changes in the cerebral cortex were evaluated under light and electron microscopes.
RESULTSThe light microscopy showed that the TET poisoning group had hypoxia changes in the cerebral cortex, which worsened over time; the treatment groups had reduced hypoxia changes, and the acetamide (2.88 g/kg/d) treatment group had more reduction than the acetamide (5.68 g/kg/d) treatment group. The electron microscopy showed that the apoptosis of neuronal cells were the main pathological changes in the TET poisoning group; the treatment groups had reduced apoptotic changes, and the acetamide (2.88 g/kg/d) treatment group had more reduction than the acetamide (5.68 g/kg/d) treatment group.
CONCLUSIONNo pathological changes associated with the synergistic toxic effect of acetamide and TET are found in the cerebral cortex. Acetamide (2.88 g/kg/d) could reduce central nervous lesions, but the efficacy is not improved after increasing the dose. For patients who cannot be identified with TET or fluoroacetamide poisoning, acetamide could be considered for treatment.
Acetamides ; pharmacology ; Animals ; Bridged-Ring Compounds ; toxicity ; Cerebral Cortex ; drug effects ; pathology ; Disease Models, Animal ; Male ; Rats ; Rats, Sprague-Dawley
7.Effect of basic fibroblast growth factor on endogenous neural stem cell in rat cerebral cortex with global cerebral ischemia-reperfusion.
Mingxin REN ; Xiaohui DENG ; Yiwei GUO ; Fengjin ZHENG ; Zhibo FENG
Journal of Biomedical Engineering 2014;31(4):846-849
The present paper is aimedto investigate the effect of basic fibroblast growth factor (bFGF) on proliferation, migration and differentiation of endogenous neural stem cell in rat cerebral cortex with global brain ischemia-reperfusion. A global brain ischemia-reperfusion model was established. Immunohistochemistry was used to observe the pathological changes and the expression of BrdU and Nestin in cerebral cortex. RT-PCR was used to measure the NSE mRNA in brain tissue. The results of measurements indicated that in sham operation group, there was no positive cell in cerebral cortex, and the content of NSE mRNA did not change. In the operation group, the expression of BrdU and Nestin increased significantly at the end of the 3rd day, and peaked on the 7th day. NSE mRNA expression did not significantly increase. In bFGF group, compared with sham operation group and model group, the number of BrdU-positive and Nestin-positive cells increased significantly at each time point (P<0. 05), and peaked at the end of the 11th day, and the content of NSE mRNA increased significantly (P<0. 05). This research demonstrated that the proliferation of endogenous neural stem cells in situ could be induced by global cerebral ischemia and reperfu- sion, and could be promoted and extended by bFGF. In additiion, bFGF might promote endogenous neural stem cells differentiated into neurons.
Animals
;
Brain Ischemia
;
pathology
;
Cell Differentiation
;
Cell Movement
;
Cell Proliferation
;
Cerebral Cortex
;
cytology
;
metabolism
;
pathology
;
Fibroblast Growth Factor 2
;
pharmacology
;
Nestin
;
metabolism
;
Neural Stem Cells
;
drug effects
;
Rats
;
Reperfusion Injury
8.Nardosinone reduces neuronal injury induced by oxygen-glucose deprivation in primary cortical cultures.
Wei LI ; Jin-li SHI ; Qin LI ; Hui-hui DUAN ; Min-ke TANG
Acta Pharmaceutica Sinica 2013;48(9):1422-1429
The aim of the study is to investigate the effect of nardosinone (Nar) on neuronal injury induced by oxygen-glucose deprivation (OGD) in primary cortical cultures isolated from embryos at gestational day 14. MTT method was used to determine the dosage regimen of Nar in primary neuronal cultures and observe the influence of Nar on the neurons suffering OGD; Western blotting analysis was used to detect expressions of protein kinase A (PKA), Ras related protein 1 (Rap1), mitogen-activated protein kinase kinase 1 (MEK1) and phospho-extracellular signal-regulated kinase 1/2 (p-ERK1/2) of OGD-injured or uninjured primary cultured neurons after Nar treatment. Results showed that Nar (50 and 100 micromol x L(-1)) improved the cell viability during OGD damage (P < 0.01) and increased the expression of PKA, Rap1, MEK1 and p-ERK1/2 in injured neurons. Additionally, elevations of PKA, Rapl, MEK1 and p-ERK1/2 in uninjured neurons were caused by Nar (50, 100 and 200 micromol x L(-1)) with a dose-dependent tenclency as well (P < 0.01). In conclusion, Nar could protect against the neuronal injury exposed to OGD, which may be relevant to the promotion of PKA and ERK signaling pathway.
Animals
;
Cell Survival
;
drug effects
;
Cells, Cultured
;
Cerebral Cortex
;
cytology
;
metabolism
;
Cyclic AMP-Dependent Protein Kinases
;
metabolism
;
Female
;
Glucose
;
deficiency
;
Hypoxia
;
pathology
;
MAP Kinase Kinase 1
;
metabolism
;
Male
;
Mice
;
Mice, Inbred ICR
;
Mitogen-Activated Protein Kinase 3
;
metabolism
;
Neurons
;
cytology
;
metabolism
;
Neuroprotective Agents
;
pharmacology
;
Sesquiterpenes
;
pharmacology
;
Signal Transduction
;
drug effects
9.Ginsenoside Rg1 antagonizes β-amyloid peptide-induced apoptosis in primarily cultured rat neurons via mitochondrial pathway.
Jia-ying WU ; Yuan-yuan SHEN ; Wei-jie ZHU ; Mei-yuan CHEN ; Zhi-qiang WANG ; Yan LIU ; Dan-yan ZHU ; Yi-jia LOU
Journal of Zhejiang University. Medical sciences 2012;41(4):393-401
OBJECTIVETo assess the neuroprotective effects of ginsenoside Rg1 against β-amyloid peptide (Aβ(25-35))-induced apoptosis in primarily cultured rat cortical neurons.
METHODSPrimarily cultured cortical neurons were obtained from embryonic (E18d) rat fetus and maintained in neurobasal medium for 7d. Primary neurons pretreated with 1 μmol/L, 10 μmol/L or 20 μmol/L Rg1 for 24 h were challenged with 10 μmol/L Aβ(25-35) for 72 h. Morphological changes of neurons were evaluated; mitochondrial membrane potential (ΔΨm) was measured; with JC-1 staining and the expression of neural apoptosis-related proteins was detected by Western blot analysis.
RESULTSExposure to Aβ(25-35) for 72 h caused serious neural cell insults. A pretreatment with Rg1 significantly reduced Aβ(25-35)induced cell death in a dose-dependent manner, with a maximal effect (-90%) obtained at 20 μmol/L. The JC-1 staining results demonstrated the loss of ΔΨm after Aβ(25-35) treatment, while Rg1 maintained the normal level of ΔΨm. A series of mitochondrion-mediated apoptotic events happened after Aβ(25-35) treatment, such as decrease of Bcl-2/Bax, release of cytochrome C and activation of caspase 9 and caspase 3, which were all blocked by Rg1 pretreatment. Both estrogen receptor (ER) antagonist ICI182, 780 and glucocorticoid receptor (GR) antagonist RU486 blocked the antiapoptotic effects of Rg1.
CONCLUSIONGinsenoside Rg1 protects primary cultured rat cortical neurons from Aβ(25-35)-induced injury, which may be associated with mitochondrion-mediated antiapoptosis pathway.
Amyloid beta-Peptides ; toxicity ; Animals ; Apoptosis ; drug effects ; Caspase 3 ; metabolism ; Caspase 9 ; metabolism ; Cells, Cultured ; Cerebral Cortex ; drug effects ; metabolism ; pathology ; Ginsenosides ; pharmacology ; Membrane Potential, Mitochondrial ; drug effects ; Mitochondria ; drug effects ; metabolism ; physiology ; Neurons ; drug effects ; metabolism ; pathology ; Peptide Fragments ; toxicity ; Proto-Oncogene Proteins c-bcl-2 ; metabolism ; Rats ; Rats, Sprague-Dawley ; bcl-2-Associated X Protein ; metabolism
10.Effects of puerarin on the neurocyte apoptosis and p-Akt (Ser473) expressions in rats with cerebral ischemia/reperfusion injury.
Jiang-quan HAN ; Kui-ying YU ; Min HE
Chinese Journal of Integrated Traditional and Western Medicine 2012;32(8):1069-1072
OBJECTIVETo observe the effects of puerarin (Pue) on the neurocyte apoptosis and the p-Akt (Ser473) expression in the ischemic penumbra of rats with cerebral ischemia/reperfusion (I/R).
METHODSThe 48 Sprague-Dawley rats were randomly divided into four groups, i.e., the sham-operation group, the I/R group, the Pue treatment group, and the Pue + LY294002 treatment group (Pue + LY), 12 in each group. The cerebral I/R rat model was established by Longa's suture method. Pue and Pue + specific P13K kinase inhibitor, i.e., LY294002 were administered. The score of the neurological deficit was estimated 1 h followed by 24 h reperfusion. The infarct volume was measured using TTC staining. The number of apoptotic neurons were detected using Tunel method. The expressions of p-Akt (Ser473) was detected using immunohistochemical assay, and the images were analyzed.
RESULTSThe score of the neurological deficit decreased more obviously, the number of apoptosis decreased more significantly, the expressions of p-Akt (Ser473) increased more significantly in the Pue group than in the I/R group (all P < 0.05). The score of the neurological deficit increased more obviously, the number of apoptosis increased more significantly, the expression of p-Akt (Ser473) decreased more significantly in the Pue + LY group than in the Pue group (all P < 0.05).
CONCLUSIONPue reduced the apoptosis of neurocytes and had protective effects against cerebral I/R injury possibly through activating the PI3K/Akt signaling pathway.
Animals ; Apoptosis ; drug effects ; Brain Ischemia ; metabolism ; pathology ; Cerebral Cortex ; drug effects ; metabolism ; Chromones ; pharmacology ; Isoflavones ; pharmacology ; Male ; Morpholines ; pharmacology ; Proto-Oncogene Proteins c-akt ; metabolism ; Rats ; Rats, Sprague-Dawley ; Reperfusion Injury ; metabolism ; pathology

Result Analysis
Print
Save
E-mail