1.Expression changes of NaV channel subunits correlate with developmental maturation of electrophysiological characteristics of rat cerebellar Purkinje neurons.
Mingyu FU ; Xiaohong JI ; Lei ZHONG ; Qiong WU ; Haifu LI ; Ningqian WANG
Journal of Southern Medical University 2023;43(7):1102-1109
OBJECTIVE:
To investigate the variations in the expression of voltage-gated sodium (Nav) channel subunits during development of rat cerebellar Purkinje neurons and their correlation with maturation of electrophysiological characteristics of the neurons.
METHODS:
We observed the changes in the expression levels of NaV1.1, 1.2, 1.3 and 1.6 during the development of Purkinje neurons using immunohistochemistry in neonatal (5-7 days after birth), juvenile (12-14 days), adolescent (21-24 days), and adult (42-60 days) SD rats. Using whole-cell patch-clamp technique, we recorded the spontaneous electrical activity of the neurons in ex vivo brain slices of rats of different ages to analyze the changes of electrophysiological characteristics of these neurons during development.
RESULTS:
The expression of NaV subunits in rat cerebellar Purkinje neurons showed significant variations during development. NaV1.1 subunit was highly expressed throughout the developmental stages and increased progressively with age (P < 0.05). NaV1.2 expression was not detected in the neurons in any of the developmental stages (P > 0.05). The expression level of NaV1.3 decreased with development and became undetectable after adolescence (P < 0.05). NaV1.6 expression was not detected during infancy, but increased with further development (P < 0.05). NaV1.1 and NaV1.3 were mainly expressed in the early stages of development. With the maturation of the rats, NaV1.3 expression disappeared and NaV1.6 expression increased in the neurons. NaV1.1 and NaV1.6 were mainly expressed after adolescence. The total NaV protein level increased gradually with development (P < 0.05) and tended to stabilize after adolescence. The spontaneous frequency and excitability of the Purkinje neurons increased gradually with development and reached the mature levels in adolescence. The developmental expression of NaV subunits was positively correlated with discharge frequency (r=0.9942, P < 0.05) and negatively correlated with the excitatory threshold of the neurons (r=0.9891, P < 0.05).
CONCLUSION
The changes in the expression levels of NaV subunits are correlated with the maturation of high frequency electrophysiological properties of the neurons, suggesting thatmature NaV subunit expressions is the basis of maturation of electrophysiological characteristics of the neurons.
Rats
;
Animals
;
Purkinje Cells/physiology*
;
Rats, Sprague-Dawley
;
Neurons
;
Brain
;
Sodium/metabolism*
2.Clinical and genetic analyses of Joubert syndrome in children.
Guang-Yu ZHANG ; Yun-Xia ZHAO ; Hui-Ling ZHAO ; Guo-Hao TANG ; Peng-Liang WANG ; Deng-Na ZHU
Chinese Journal of Contemporary Pediatrics 2023;25(5):497-501
OBJECTIVES:
To study the clinical and genetic features of Joubert syndrome (JS) in children.
METHODS:
A retrospective analysis was performed on the clinical data, genetic data, and follow-up data of 20 children who were diagnosed with JS in the Department of Children's Rehabilitation, the Third Affiliated Hospital of Zhengzhou University, from January 2017 to July 2022.
RESULTS:
Among the 20 children with JS, there were 11 boys and 9 girls. The common clinical manifestations were developmental delay (20 children, 100%), abnormal eye movement (19 children, 95%), and hypotonia (16 children, 80%), followed by abnormal respiratory rhythm in 5 children (25%) and unusual facies (including prominent forehead, low-set ears, and triangular mouth) in 3 children (15%), and no limb deformity was observed. All 20 children (100%) had the typical "molar tooth sign" and "midline cleft syndrome" on head images, and 6 children (30%) had abnormal eye examination results. Genetic testing was performed on 7 children and revealed 6 pathogenic genes, i.e., the CPLANE1, RPGRIP1L, MKS1, CC2D2A, CEP120, and AHI1 genes.
CONCLUSIONS
For children with developmental delay, especially those with abnormal eye movement and hypotonia, it is recommended to perform a head imaging examination to determine the presence or absence of "molar tooth sign" and "midline cleft syndrome", so as to screen for JS to avoid missed diagnosis and misdiagnosis. There are many pathogenic genes for JS, and whole-exome sequencing can assist in the diagnosis of JS.
Male
;
Female
;
Humans
;
Child
;
Cerebellum
;
Abnormalities, Multiple/genetics*
;
Kidney Diseases, Cystic/genetics*
;
Eye Abnormalities/genetics*
;
Retina
;
Retrospective Studies
;
Muscle Hypotonia/genetics*
3.Magnetic resonance imaging features of cerebellar atrophy pattern after epilepsy.
Ximei FENG ; Qian WANG ; Hong JIN ; Shuai YANG ; Wu XING
Journal of Central South University(Medical Sciences) 2023;48(5):691-697
OBJECTIVES:
Clinically, it has been found that some patients with epilepsy are accompanied by cerebellar atrophy that is inconsistent with symptoms, but the pattern of cerebellar atrophy after epilepsy and the role of cerebellar atrophy in the mechanism of epilepsy have not been elucidated. This study aims to explore the specific pattern of cerebellar atrophy after epilepsy via analyzing magnetic resonance images in patients with postepileptic cerebellar atrophy.
METHODS:
A total of 41 patients with epilepsy, who received the treatment in Xiangya Hospital of Central South University from January 2017 to January 2022 and underwent cranial MRI examination, were selected as the case group. The results of cranial MRI examination of all patients showed cerebellar atrophy. In the same period, 41 cases of physical examination were selected as the control group. General clinical data and cranial MRI results of the 2 groups were collected. The maximum area and signal of dentate nucleus, the maximum width of the brachium pontis, the maximum anterior-posterior diameter of the pontine, and the maximum transverse area of the fourth ventricle were compared between the 2 groups. The indexes with difference were further subjected to logistic regression analysis to clarify the characteristic imaging changes in patients with cerebellar atrophy after epilepsy.
RESULTS:
Compared with the control group, the maximum width of the brachium pontis and the maximum anterior-posterior diameter of the pontine were decreased significantly, the maximum transverse area of the fourth ventricle was increased significantly in the case group (all P<0.05). The difference in distribution of the low, equal, and high signal in dentate nucleus between the 2 groups was statistically significant (χ2=43.114, P<0.001), and the difference in the maximum area of dentate nucleus between the 2 groups was not significant (P>0.05). The maximum width of the brachium pontis [odds ratio (OR)=3.327, 95% CI 1.454 to 7.615, P=0.004] and the maximum transverse area of the fourth ventricle (OR=0.987, 95% CI 0.979 to 0.995, P=0.002) were independent factors that distinguished cerebellar atrophy after epilepsy from the normal control, while the anterior-posterior diameter of pontine (OR=1.456, 95% CI 0.906 to 2.339, P>0.05) was not an independent factor that distinguished them.
CONCLUSIONS
In MRI imaging, cerebellar atrophy after epilepsy is manifested as significant atrophy of the brachium pontis, significant enlargement of the fourth ventricle, and increased dentate nucleus signaling while insignificant dentate nucleus atrophy. This particular pattern may be associated with seizures and exacerbated pathological processes.
Humans
;
Magnetic Resonance Imaging
;
Pons
;
Epilepsy/diagnostic imaging*
;
Atrophy/pathology*
;
Cerebellum/pathology*
5.Effects of RNA M6A demethylase ALKBH5 gene deficiency on morphology and function of cerebellum in aged mice.
Yi FEI ; Chun Hui MA ; Qing LI ; Wei SONG ; Wei Min TONG ; Ya Mei NIU
Chinese Journal of Pathology 2023;52(6):606-611
Objective: To investigate the effects of RNA m6A demethylase ALKBH5 gene deficiency on cerebellar morphology and function in the aged mice, and to explore the role of ALKBH5 in cerebellar degeneration. Methods: Western blot was performed to detect the protein level of ALKBH5 in the cerebellum of wild-type mice of various ages. The expression of NeuN, Calbindin-D28K, MAP2, GFAP and other proteins in the cerebella of middle-aged (12-month-old) and aged (18-month-old) wild-type mice and ALKBH5-/- mice was examined using immunohistochemistry. The balance beam test and gait analysis were performed to test the balance ability and motor coordination of the mice. Results: With aging of the mice, the expression of ALKBH5 in the cerebellum increased gradually in an age-dependent manner. In the aged mice, but not middle-aged mice, the body weight, whole brain weight and cerebellum weight of ALKBH5-/- mice decreased by 15%, 10% and 21%, respectively (P<0.05). The expression of ALKBH5 in the Purkinje cells was much higher than that in other types of neural cells. Correspondingly, ALKBH5-deficiency caused 40% reduction in the number of Purkinje cells, as well as the length and density of neuronal dendrites in the aged mice (P<0.01). In addition, the time for the aged ALKBH5-/- mice to pass the balance beam was 70% longer than that of the wild type mice of the same age, with unstable gaits (P<0.01). Conclusions: Gene deficiency of RNA m6A demethylase ALKBH5 causes cerebellar atrophy, Purkinje neuron loss and damage in the aged mice. These changes eventually affect mice's motor coordination and balance ability. These results suggest that imbalanced RNA m6A methylation may lead to neurodegenerative lesions in the cerebellum of mice.
Animals
;
Mice
;
AlkB Homolog 5, RNA Demethylase/metabolism*
;
Cerebellum/metabolism*
;
Methylation
;
RNA/metabolism*
6.Effects of electroacupuncture pretreatment on GABAA receptor of fastigial nucleus and sympathetic nerve activity in rats with myocardial ischemia reperfusion injury.
Shuai-Ya WANG ; Qi SHU ; Pian-Pian CHEN ; Fan ZHANG ; Xiang ZHOU ; Qian-Yi WANG ; Jie ZHOU ; Xia WEI ; Ling HU ; Qing YU ; Rong-Lin CAI
Chinese Acupuncture & Moxibustion 2023;43(6):669-678
OBJECTIVE:
To observe the effects of electroacupuncture (EA) pretreatment on cardiac function, sympathetic nerve activity, indexes of myocardial injury and GABAA receptor in fastigial nucleus in rats with myocardial ischemia reperfusion injury (MIRI), and to explore the neuroregulatory mechanism of EA pretreatment in improving MIRI.
METHODS:
A total of 60 male SD rats were randomly divided into a sham operation group, a model group, an EA group, an agonist group and an agonist+EA group, 12 rats in each group. The MIRI model was established by ligation of the left anterior descending coronary artery. EA was applied at bilateral "Shenmen" (HT 7) and "Tongli" (HT 5) in the EA group and the agonist+EA group, with continuous wave, in frequency of 2 Hz and intensity of 1 mA, 30 min each time, once a day for 7 consecutive days. After intervention, the MIRI model was established. In the agonist group, the muscone (agonist of GABAA receptor, 1 g/L) was injected in fastigial nucleus for 7 consecutive days before modeling, 150 μL each time, once a day. In the agonist+EA group, the muscone was injected in fastigial nucleus 30 min before EA intervention. The data of electrocardiogram was collected by PowerLab standard Ⅱ lead, and ST segment displacement and heart rate variability (HRV) were analyzed; the serum levels of norepinephrine (NE), creatine kinase isoenzyme MB (CK-MB) and cardiac troponin I (cTnI) were detected by ELISA; the myocardial infarction area was measured by TTC staining; the morphology of myocardial tissue was observed by HE staining; the positive expression and mRNA expression of GABAA receptor in fastigial nucleus were detected by immunohistochemistry and real-time PCR.
RESULTS:
Compared with the sham operation group, in the model group, ST segment displacement and ratio of low frequency to high frequency (LF/HF) of HRV were increased (P<0.01), HRV frequency domain analysis showed enhanced sympathetic nerve excitability, the serum levels of NE, CK-MB and cTnI were increased (P<0.01), the percentage of myocardial infarction area was increased (P<0.01), myocardial fiber was broken and interstitial edema was serious, the positive expression and mRNA expression of GABAA receptor in fastigial nucleus were increased (P<0.01). Compared with the model group, in the EA group, ST segment displacement and LF/HF ratio were decreased (P<0.01), HRV frequency domain analysis showed reduced sympathetic nerve excitability, the serum levels of NE, CK-MB and cTnI were decreased (P<0.01), the percentage of myocardial infarction area was decreased (P<0.01), myocardial fiber breakage and interstitial edema were lightened, the positive expression and mRNA expression of GABAA receptor in fastigial nucleus were decreased (P<0.01). Compared with the EA group, in the agonist group and the agonist+EA group, ST segment displacement and LF/HF ratio were increased (P<0.01), HRV frequency domain analysis showed enhanced sympathetic nerve excitability, the serum levels of NE, CK-MB and cTnI were increased (P<0.01), the percentage of myocardial infarction area was increased (P<0.01), myocardial fiber breakage and interstitial edema were aggravated, the positive expression and mRNA expression of GABAA receptor in fastigial nucleus were increased (P<0.01).
CONCLUSION
EA pretreatment can improve the myocardial injury in MIRI rats, and its mechanism may be related to the inhibition of GABAA receptor expression in fastigial nucleus, thereby down-regulating the excitability of sympathetic nerve.
Male
;
Animals
;
Rats
;
Rats, Sprague-Dawley
;
Cerebellar Nuclei
;
Electroacupuncture
;
Myocardial Reperfusion Injury/therapy*
;
Receptors, GABA-A/genetics*
;
RNA, Messenger
7.Clinical features and genetic analysis of two Chinese pedigrees affected with Joubert syndrome.
Dengzhi ZHAO ; Yan CHU ; Ke YANG ; Xiaodong HUO ; Xingxing LEI ; Yanli YANG ; Chaoyang ZHANG ; Hai XIAO ; Shixiu LIAO
Chinese Journal of Medical Genetics 2023;40(1):21-25
OBJECTIVE:
To explore the clinical characteristics and genetic basis of two Chinese pedigrees affected with Joubert syndrome.
METHODS:
Clinical data of the two pedigrees was collected. Genomic DNA was extracted from peripheral blood samples and subjected to high-throughput sequencing. Candidate variants were verified by Sanger sequencing. Prenatal diagnosis was carried out for a high-risk fetus from pedigree 2.
RESULTS:
The proband of pedigree 1 was a fetus at 23+5 weeks gestation, for which both ultrasound and MRI showed "cerebellar vermis malformation" and "molar tooth sign". No apparent abnormality was noted in the fetus after elected abortion. The fetus was found to harbor c.812+3G>T and c.1828G>C compound heterozygous variants of the INPP5E gene, which have been associated with Joubert syndrome type 1. The proband from pedigree 2 had growth retardation, mental deficiency, peculiar facial features, low muscle tone and postaxial polydactyly of right foot. MRI also revealed "cerebellar dysplasia" and "molar tooth sign". The proband was found to harbor c.485C>G and c.1878+1G>A compound heterozygous variants of the ARMC9 gene, which have been associated with Joubert syndrome type 30. Prenatal diagnosis found that the fetus only carried the c.485C>G variant. A healthy infant was born, and no anomalies was found during the follow-up.
CONCLUSION
The compound heterozygous variants of the INPP5E and ARMC9 genes probably underlay the disease in the two pedigrees. Above finding has expanded the spectrum of pathogenic variants underlying Joubert syndrome and provided a basis for genetic counseling and prenatal diagnosis.
Female
;
Humans
;
Pregnancy
;
Pedigree
;
Cerebellum/abnormalities*
;
Abnormalities, Multiple/diagnosis*
;
Eye Abnormalities/diagnosis*
;
Kidney Diseases, Cystic/diagnosis*
;
Phosphoric Monoester Hydrolases/genetics*
;
Retina/abnormalities*
;
East Asian People
;
Mutation
8.Analysis of TUBB4A gene variant in a patient with adolescent-onset hypomyelinating leukodystrophy with atrophy of basal ganglia and cerebellum.
Zixuan YING ; Xi CHENG ; Xiaoquan XU ; Zhi MA ; Zhengyu CHEN ; Wen CHEN ; Lang QIN ; Qi NIU
Chinese Journal of Medical Genetics 2023;40(4):390-394
OBJECTIVE:
To explore the clinical characteristics and genetic etiology of a patient with adolescent-onset hypomyelinated leukodystrophy with atrophy of basal ganglia and cerebellum (H-ABC).
METHODS:
A patient who was diagnosed with H-ABC in March 2018 at the First Affiliated Hospital of Nanjing Medical University was selected as the study subject. Clinical data was collected. Peripheral venous blood samples of the patient and his parents were collected. The patient was subjected to whole exome sequencing (WES). Candidate variant was verified by Sanger sequencing.
RESULTS:
The patient, a 31-year-old male, had manifested with developmental retardation, cognitive decline and abnormal gait. WES revealed that he has harbored a heterozygous c.286G>A variant of the TUBB4A gene. Sanger sequencing confirmed that neither of his parents has carried the same variant. Analysis with SIFT online software indicated the amino acid encoded by this variant is highly conserved among various species. This variant has been recorded by the Human Gene Mutation Database (HGMD) with a low population frequency. The 3D structure constructed by PyMOL software showed that the variant has a harmful effect on the structure and function of the protein. According to the guidelines formulated by the American College of Medical Genetics and Genomics (ACMG), the variant was rated as likely pathogenic.
CONCLUSION
The c.286G>A (p.Gly96Arg) variant of the TUBB4A gene probably underlay the hypomyelinating leukodystrophy with atrophy of basal ganglia and cerebellum in this patient. Above finding has enriched the spectrum of TUBB4A gene variants and enabled early definitive diagnosis of this disorder.
Male
;
Humans
;
Adolescent
;
Adult
;
Magnetic Resonance Imaging
;
Basal Ganglia/pathology*
;
Cerebellum
;
Atrophy/pathology*
;
Mutation
;
Tubulin/genetics*
9.Ventromedial Thalamus-Projecting DCN Neurons Modulate Associative Sensorimotor Responses in Mice.
Jie ZHANG ; Hao CHEN ; Li-Bin ZHANG ; Rong-Rong LI ; Bin WANG ; Qian-Hui ZHANG ; Liu-Xia TONG ; Wei-Wei ZHANG ; Zhong-Xiang YAO ; Bo HU
Neuroscience Bulletin 2022;38(5):459-473
The deep cerebellar nuclei (DCN) integrate various inputs to the cerebellum and form the final cerebellar outputs critical for associative sensorimotor learning. However, the functional relevance of distinct neuronal subpopulations within the DCN remains poorly understood. Here, we examined a subpopulation of mouse DCN neurons whose axons specifically project to the ventromedial (Vm) thalamus (DCNVm neurons), and found that these neurons represent a specific subset of DCN units whose activity varies with trace eyeblink conditioning (tEBC), a classical associative sensorimotor learning task. Upon conditioning, the activity of DCNVm neurons signaled the performance of conditioned eyeblink responses (CRs). Optogenetic activation and inhibition of the DCNVm neurons in well-trained mice amplified and diminished the CRs, respectively. Chemogenetic manipulation of the DCNVm neurons had no effects on non-associative motor coordination. Furthermore, optogenetic activation of the DCNVm neurons caused rapid elevated firing activity in the cingulate cortex, a brain area critical for bridging the time gap between sensory stimuli and motor execution during tEBC. Together, our data highlights DCNVm neurons' function and delineates their kinematic parameters that modulate the strength of associative sensorimotor responses.
Animals
;
Blinking
;
Cerebellar Nuclei/physiology*
;
Cerebellum
;
Mice
;
Neurons/physiology*
;
Thalamus
10.Noradrenaline modulates the spontaneous firing activities of Purkinje cells via α2-adrenergic receptor in mouse cerebellar cortex.
Xu-Dong ZHANG ; Li-Fei WANG ; Fang-Ling XUAN ; De-Lai QIU ; Bin-Bin ZHANG ; Chun-Ping CHU
Acta Physiologica Sinica 2022;74(3):359-369
Cerebellar Purkinje cells (PCs) exhibit two types of discharge activities: simple spike (SS) and complex spike (CS). Previous studies found that noradrenaline (NA) can inhibit CS and bidirectionally regulate SS, but the enhancement of NA on SS is overwhelmed by the strong inhibition of excitatory molecular layer interneurons. However, the mechanism underlying the effect of NA on SS discharge frequency is not clear. Therefore, in the present study, we examined the mechanism underlying the increasing effect of NA on SS firing of PC in mouse cerebellar cortex in vivo and in cerebellar slice by cell-attached and whole-cell recording technique and pharmacological methods. GABAA receptor was blocked by 100 µmol/L picrotoxin in the whole process. In vivo results showed that NA significantly reduced the number of spikelets of spontaneous CS and enhanced the discharge frequency of SS, but did not affect the discharge frequency of CS. In vitro experiments showed that NA reduced the number of CS spikelets and after hyperpolarization potential (AHP) induced by electrical stimulation, and increased the discharge frequency of SS. NA also reduced the amplitude of excitatory postsynaptic current (EPSC) of parallel fiber (PF)-PC and significantly increased the paired-pulse ratio (PPR). Application of yohimbine, an antagonist of α2-adrenergic receptor (AR), completely eliminated the enhancing effect of NA on SS. The α2-AR agonist, UK14304, also increased the frequency of SS. The β-AR blocker, propranolol, did not affect the effects of NA on PC. These results suggest that in the absence of GABAA receptors, NA could attenuate the synaptic transmission of climbing fiber (CF)-PC via activating α2-AR, inhibit CS activity and reduce AHP, thus enhancing the SS discharge frequency of PC. This result suggests that NA neurons of locus coeruleus can finely regulate PC signal output by regulating CF-PC synaptic transmission.
Action Potentials/physiology*
;
Animals
;
Cerebellar Cortex/metabolism*
;
Cerebellum/metabolism*
;
Mice
;
Norepinephrine/pharmacology*
;
Purkinje Cells/metabolism*
;
Receptors, Adrenergic, alpha-2/metabolism*
;
Receptors, GABA-A/metabolism*

Result Analysis
Print
Save
E-mail